This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1001

2010 Serbia National Math Olympiad, 2

In an acute-angled triangle $ABC$, $M$ is the midpoint of side $BC$, and $D, E$ and $F$ the feet of the altitudes from $A, B$ and $C$, respectively. Let $H$ be the orthocenter of $\Delta ABC$, $S$ the midpoint of $AH$, and $G$ the intersection of $FE$ and $AH$. If $N$ is the intersection of the median $AM$ and the circumcircle of $\Delta BCH$, prove that $\angle HMA = \angle GNS$. [i]Proposed by Marko Djikic[/i]