This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2021 Science ON grade XII, 3

Define $E\subseteq \{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$ such that $E$ posseses the following properties:\\ $\textbf{(i)}$ If $\int_0^1 f(x)g(x) dx = 0$ for $f\in E$ with $\int_0^1f^2(t)dt \neq 0$, then $g\in E$; \\ $\textbf{(ii)}$ There exists $h\in E$ with $\int_0^1 h^2(t)dt\neq 0$.\\ Prove that $E=\{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$. \\ [i](Andrei Bâra)[/i]

2021 Science ON all problems, 3

Define $E\subseteq \{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$ such that $E$ posseses the following properties:\\ $\textbf{(i)}$ If $\int_0^1 f(x)g(x) dx = 0$ for $f\in E$ with $\int_0^1f^2(t)dt \neq 0$, then $g\in E$; \\ $\textbf{(ii)}$ There exists $h\in E$ with $\int_0^1 h^2(t)dt\neq 0$.\\ Prove that $E=\{f:[0,1]\to \mathbb{R}\mid f \textnormal{ is Riemann-integrable}\}$. \\ [i](Andrei Bâra)[/i]