This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2023 India EGMO TST, P5

Let $k$ be a positive integer. A sequence of integers $a_1, a_2, \cdots$ is called $k$-pop if the following holds: for every $n \in \mathbb{N}$, $a_n$ is equal to the number of distinct elements in the set $\{a_1, \cdots , a_{n+k} \}$. Determine, as a function of $k$, how many $k$-pop sequences there are. [i]Proposed by Sutanay Bhattacharya[/i]

India EGMO 2023 TST, 5

Let $k$ be a positive integer. A sequence of integers $a_1, a_2, \cdots$ is called $k$-pop if the following holds: for every $n \in \mathbb{N}$, $a_n$ is equal to the number of distinct elements in the set $\{a_1, \cdots , a_{n+k} \}$. Determine, as a function of $k$, how many $k$-pop sequences there are. [i]Proposed by Sutanay Bhattacharya[/i]