This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 6

1997 Romania National Olympiad, 1

Let $\alpha \in \mathbb{C} \setminus \mathbb{Q}$ be such that the set $A= \{ a+b \alpha : a,b \in \mathbb{Z} \}$ is a ring with respect to the usual operations of $\mathbb{C}.$ If the ring $A$ has exactly four invertible elements, prove that $A= \mathbb{Z}[i].$

2021 Science ON all problems, 2

Consider an odd prime $p$. A comutative ring $(A,+, \cdot)$ has the property that $ab=0$ implies $a^p=0$ or $b^p=0$. Moreover, $\underbrace{1+1+\cdots +1}_{p \textnormal{ times}} =0$. Take $x,y\in A$ such that there exist $m,n\geq 1$, $m\neq n$ with $x+y=x^my=x^ny$, and also $y$ is not invertible. \\ \\ $\textbf{(a)}$ Prove that $(a+b)^p=a^p+b^p$ and $(a+b)^{p^2}=a^{p^2}+b^{p^2}$ for all $a,b\in A$.\\ $\textbf{(b)}$ Prove that $x$ and $y$ are nilpotent.\\ $\textbf{(c)}$ If $y$ is invertible, does the conclusion that $x$ is nilpotent stand true? \\ \\ [i] (Bogdan Blaga)[/i]

1998 Romania National Olympiad, 3

A ring $A$ is called Boolean if $x^2 = x$ for every $x \in A$. Prove that: a) A finite set $A$ with $n \geq 2$ elements can be equipped with the structure of a Boolean ring if and only if $n = 2^k$ for some positive integer $k$. b) The set of nonnegative integers can be equipped with the structure of a Boolean ring.

2021 Science ON grade XII, 2

Consider an odd prime $p$. A comutative ring $(A,+, \cdot)$ has the property that $ab=0$ implies $a^p=0$ or $b^p=0$. Moreover, $\underbrace{1+1+\cdots +1}_{p \textnormal{ times}} =0$. Take $x,y\in A$ such that there exist $m,n\geq 1$, $m\neq n$ with $x+y=x^my=x^ny$, and also $y$ is not invertible. \\ \\ $\textbf{(a)}$ Prove that $(a+b)^p=a^p+b^p$ and $(a+b)^{p^2}=a^{p^2}+b^{p^2}$ for all $a,b\in A$.\\ $\textbf{(b)}$ Prove that $x$ and $y$ are nilpotent.\\ $\textbf{(c)}$ If $y$ is invertible, does the conclusion that $x$ is nilpotent stand true? \\ \\ [i] (Bogdan Blaga)[/i]

2021 Romania National Olympiad, 2

Determine all non-trivial finite rings with am unit element in which the sum of all elements is invertible. [i]Mihai Opincariu[/i]

2025 Romania National Olympiad, 1

We say a ring $(A,+,\cdot)$ has property $(P)$ if : \[ \begin{cases} \text{the set } A \text{ has at least } 4 \text{ elements} \\ \text{the element } 1+1 \text{ is invertible}\\ x+x^4=x^2+x^3 \text{ holds for all } x \in A \end{cases} \] a) Prove that if a ring $(A,+,\cdot)$ has property $(P)$, and $a,b \in A$ are distinct elements, such that $a$ and $a+b$ are units, then $1+ab$ is also a unit, but $b$ is not a unit. b) Provide an example of a ring with property $(P)$.