This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

Dumbest FE I ever created, 5.

Find all non decreasing function $f : \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ and $m,n \in \mathbb{N}_0$ such that $m+n \neq 0$ there exist $m',n' \in \mathbb{N}_0$ such that $m'+n'=m+n+1$ and $$f(f^m(x)+f^n(y))=f^{m'}(x)+f^{n'}(y)$$ . Note : $f^0(x)=x$ and $f^{n}(x)=f(f^{n-1}(x))$ for all $n \in \mathbb{N}$ . [hide=original]Find all non decreasing functions $f \colon \mathbb{R} \to \mathbb{R}$ such that for all $x,y \in \mathbb{R}$ $$ f(x+f(y))=f(x)+f(y) \text{ or } f(f(x))+y$$ .[/hide]