Found problems: 1239
2019 Estonia Team Selection Test, 12
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
2024 Korea Winter Program Practice Test, Q3
Consider any sequence of real numbers $a_0$, $a_1$, $\cdots$. If, for all pairs of nonnegative integers $(m, s)$, there exists some integer $n \in [m+1, m+2024(s+1)]$ satisfying $a_m+a_{m+1}+\cdots+a_{m+s}=a_n+a_{n+1}+\cdots+a_{n+s}$, say that this sequence has [i]repeating sums[/i]. Is a sequence with repeating sums always eventually periodic?
2012 China Northern MO, 5
Let $\{a_n\}$ be the sequance with $a_0=0$, $a_n=\frac{1}{a_{n-1}-2}$ ($n\in N_+$). Select an arbitrary term $a_k$ in the sequence $\{a_n\}$ and construct the sequence $\{b_n\}$: $b_0=a_k$, $b_n=\frac{2b_{n-1}+1} {b_{n-1}}$ ($n\in N_+$) . Determine whether the sequence $\{b_n\}$ is a finite sequence or an infinite sequence and give proof.
2020 Brazil Cono Sur TST, 3
Let $a_1,a_2, \cdots$ be a sequence of integers that satisfies: $a_1=1$ and $a_{n+1}=a_n+a_{\lfloor \sqrt{n} \rfloor} , \forall n\geq 1 $. Prove that for all positive $k$, there is $m \geq 1$ such that $k \mid a_m$.
2020 Regional Olympiad of Mexico Northeast, 1
Let $a_1=2020$ and let $a_{n+1}=\sqrt{2020+a_n}$ for $n\ge 1$. How much is $\left\lfloor a_{2020}\right\rfloor$?
Note: $\lfloor x\rfloor$ denotes the integer part of a number, that is that is, the immediate integer less than $x$. For example, $\lfloor 2.71\rfloor=2$ and $\lfloor \pi\rfloor=3$.
2021 Belarusian National Olympiad, 10.1
An arbitrary positive number $a$ is given. A sequence ${a_n}$ is defined by equalities $a_1=\frac{a}{a+1}$ and $a_{n+1}=\frac{aa_n}{a^2+a_n-aa_n}$ for all $n \geq 1$
Find the minimal constant $C$ such that inequality $$a_1+a_1a_2+\ldots+a_1\ldots a_m<C$$ holds for all positive integers $m$ regardless of $a$
2014 SEEMOUS, Problem 2
Consider the sequence $(x_n)$ given by
$$x_1=2,\enspace x_{n+1}=\frac{x_n+1+\sqrt{x_n^2+2x_n+5}}2,\enspace n\ge2.$$Prove that the sequence $y_n=\sum_{k=1}^n\frac1{x_k^2-1},\enspace n\ge1$ is convergent and find its limit.
2011 Germany Team Selection Test, 1
A sequence $x_1, x_2, \ldots$ is defined by $x_1 = 1$ and $x_{2k}=-x_k, x_{2k-1} = (-1)^{k+1}x_k$ for all $k \geq 1.$ Prove that $\forall n \geq 1$ $x_1 + x_2 + \ldots + x_n \geq 0.$
[i]Proposed by Gerhard Wöginger, Austria[/i]
1969 IMO Shortlist, 28
$(GBR 5)$ Let us define $u_0 = 0, u_1 = 1$ and for $n\ge 0, u_{n+2} = au_{n+1}+bu_n, a$ and $b$ being positive integers. Express $u_n$ as a polynomial in $a$ and $b.$ Prove the result. Given that $b$ is prime, prove that $b$ divides $a(u_b -1).$
1967 IMO Shortlist, 1
Let $a_1,\ldots,a_8$ be reals, not all equal to zero. Let
\[ c_n = \sum^8_{k=1} a^n_k\]
for $n=1,2,3,\ldots$. Given that among the numbers of the sequence $(c_n)$, there are infinitely many equal to zero, determine all the values of $n$ for which $c_n = 0.$
2013 BAMO, 5
Let $F_1,F_2,F_3,...$ be the [i]Fibonacci sequence[/i], the sequence of positive integers with $F_1 =F_2 =1$ and $F_{n+2}=F_{n+1}+F_n$ for all $n \ge 1$. A [i]Fibonacci number[/i] is by definition a number appearing in this sequence.
Let $P_1,P_2,P_3,...$ be the sequence consisting of all the integers that are products of two Fibonacci numbers (not
necessarily distinct) in increasing order. The first few terms are $1,2,3,4,5,6,8,9,10,13,...$ since, for example $3 = 1 \cdot 3, 4 = 2 \cdot 2$, and $10 = 2 \cdot 5$.
Consider the sequence $D_n$ of [i]successive [/i] differences of the $P_n$ sequence, where $D_n = P_{n+1}-P_n$ for $n \ge 1$. The first few terms of D_n are $1,1,1,1,1,2,1,1,3, ...$ .
Prove that every number in $D_n$ is a [i]Fibonacci number[/i].
2021 Saudi Arabia IMO TST, 10
Given a positive integer $k$ show that there exists a prime $p$ such that one can choose distinct integers $a_1,a_2\cdots, a_{k+3} \in \{1, 2, \cdots ,p-1\}$ such that p divides $a_ia_{i+1}a_{i+2}a_{i+3}-i$ for all $i= 1, 2, \cdots, k$.
[i]South Africa [/i]
2021 Thailand TST, 2
For any odd prime $p$ and any integer $n,$ let $d_p (n) \in \{ 0,1, \dots, p-1 \}$ denote the remainder when $n$ is divided by $p.$ We say that $(a_0, a_1, a_2, \dots)$ is a [i]p-sequence[/i], if $a_0$ is a positive integer coprime to $p,$ and $a_{n+1} =a_n + d_p (a_n)$ for $n \geqslant 0.$
(a) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_n >b_n$ for infinitely many $n,$ and $b_n > a_n$ for infinitely many $n?$
(b) Do there exist infinitely many primes $p$ for which there exist $p$-sequences $(a_0, a_1, a_2, \dots)$ and $(b_0, b_1, b_2, \dots)$ such that $a_0 <b_0,$ but $a_n >b_n$ for all $n \geqslant 1?$
[I]United Kingdom[/i]
2002 Switzerland Team Selection Test, 6
A sequence $x_1,x_2,x_3,...$ has the following properties:
(a) $1 = x_1 < x_2 < x_3 < ...$
(b) $x_{n+1} \le 2n$ for all $n \in N$.
Prove that for each positive integer $k$ there exist indices $i$ and $j$ such that $k =x_i -x_j$.
2015 Harvard-MIT Mathematics Tournament, 4
Compute the number of sequences of integers $(a_1,\ldots,a_{200})$ such that the following conditions hold.
[list]
[*] $0\leq a_1<a_2<\cdots<a_{200}\leq 202.$
[*] There exists a positive integer $N$ with the following property: for every index $i\in\{1,\ldots,200\}$ there exists an index $j\in\{1,\ldots,200\}$ such that $a_i+a_j-N$ is divisible by $203$.
[/list]
2015 Belarus Team Selection Test, 3
Let $n > 1$ be a given integer. Prove that infinitely many terms of the sequence $(a_k )_{k\ge 1}$, defined by \[a_k=\left\lfloor\frac{n^k}{k}\right\rfloor,\] are odd. (For a real number $x$, $\lfloor x\rfloor$ denotes the largest integer not exceeding $x$.)
[i]Proposed by Hong Kong[/i]
1999 Bundeswettbewerb Mathematik, 2
The sequences $(a_n)$ and $(b_n)$ are defined by $a_1 = b_1 = 1$ and $a_{n+1} = a_n +b_n, b_{n+1} = a_nb_n$ for $n = 1,2,...$ Show that every two distinct terms of the sequence $(a_n)$ are coprime
Russian TST 2020, P1
Let $n \geqslant 3$ be a positive integer and let $\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a strictly increasing sequence of $n$ positive real numbers with sum equal to 2. Let $X$ be a subset of $\{1,2, \ldots, n\}$ such that the value of
\[
\left|1-\sum_{i \in X} a_{i}\right|
\]
is minimised. Prove that there exists a strictly increasing sequence of $n$ positive real numbers $\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ with sum equal to 2 such that
\[
\sum_{i \in X} b_{i}=1.
\]
2023 China National Olympiad, 1
Define the sequences $(a_n),(b_n)$ by
\begin{align*}
& a_n, b_n > 0, \forall n\in\mathbb{N_+} \\
& a_{n+1} = a_n - \frac{1}{1+\sum_{i=1}^n\frac{1}{a_i}} \\
& b_{n+1} = b_n + \frac{1}{1+\sum_{i=1}^n\frac{1}{b_i}}
\end{align*}
1) If $a_{100}b_{100} = a_{101}b_{101}$, find the value of $a_1-b_1$;
2) If $a_{100} = b_{99}$, determine which is larger between $a_{100}+b_{100}$ and $a_{101}+b_{101}$.
2013 IFYM, Sozopol, 5
Determine all increasing sequences $\{a_n\}_{n=1}^\infty$ of natural numbers with the following property: for each two natural numbers $i$ and $j$ (not necessarily different), the numbers $i+j$ and $a_i+a_j$ have an equal number of distinct natural divisors.
2022 Durer Math Competition (First Round), 5
Let $a_1 \le a_2 \le ... \le a_n$ be real numbers for which $$\sum_{i=1}^{n} a_i^{2k+1} = 0$$ holds for all integers $0 \le k < n$. Show that in this case, $a_i = -a_{n+1-i}$ holds for all $1 \le i \le n$.
2015 China Northern MO, 8
The sequence $\{a_n\}$ is defined as follows: $a_1$ is a positive rational number, $a_n= \frac{p_n}{q_n}$, ($n= 1,2,…$) is a positive integer, where $p_n$ and $q_n$ are positive integers that are relatively prime, then $a_{n+1} = \frac{p_n^2+2015}{p_nq_n}$ Is there a$_1>2015$, making the sequence $\{a_n\}$ a bounded sequence? Justify your conclusion.
2017 International Zhautykov Olympiad, 1
Let $(a_n)$ be sequnce of positive integers such that first $k$ members $a_1,a_2,...,a_k$ are distinct positive integers, and for each $n>k$, number $a_n$ is the smallest positive integer that can't be represented as a sum of several (possibly one) of the numbers $a_1,a_2,...,a_{n-1}$. Prove that $a_n=2a_{n-1}$ for all sufficently large $n$.
2020 Romanian Master of Mathematics Shortlist, C4
A ternary sequence is one whose terms all lie in the set $\{0, 1, 2\}$. Let $w$ be a length $n$ ternary sequence $(a_1,\ldots,a_n)$. Prove that $w$ can be extended leftwards and rightwards to a length $m=6n$ ternary sequence \[(d_1,\ldots,d_m) = (b_1,\ldots,b_p,a_1,\ldots,a_n,c_1,\ldots,c_q), \quad p,q\geqslant 0,\]containing no length $t > 2n$ palindromic subsequence.
(A sequence is called palindromic if it reads the same rightwards and leftwards. A length $t$ subsequence of $(d_1,\ldots,d_m)$ is a sequence of the form $(d_{i_1},\ldots,d_{i_t})$, where $1\leqslant i_1<\cdots<i_t \leqslant m$.)
1988 IMO Longlists, 80
The sequence $ \{a_n\}$ of integers is defined by
\[ a_1 \equal{} 2, a_2 \equal{} 7
\]
and
\[ \minus{} \frac {1}{2} < a_{n \plus{} 1} \minus{} \frac {a^2_n}{a_{n \minus{} 1}} \leq \frac {}{}, n \geq 2.
\]
Prove that $ a_n$ is odd for all $ n > 1.$