This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2006 Cezar Ivănescu, 3

[b]a)[/b] Let be a sequence $ \left( x_n \right)_{n\ge 1} $ defined by the recursion $ x_{n+1}=\frac{1+x_n}{1-x_n} , $ with $ x_1=2006. $ Calculate $ \lim_{n\to\infty } \frac{x_1+x_2+\cdots +x_n}{n} . $ [b]b)[/b] Prove that if a convergent sequence $ \left( s_n \right)_{n\ge 1} $ verifies $ a_{2^n} =na_n , $ for any natural numbers $ n, $ then $ a_n=0, $ for any natural numbers $ n. $ [i]Cornel Stoicescu[/i]