This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 42

1999 IMO Shortlist, 7

Let $p >3$ be a prime number. For each nonempty subset $T$ of $\{0,1,2,3, \ldots , p-1\}$, let $E(T)$ be the set of all $(p-1)$-tuples $(x_1, \ldots ,x_{p-1} )$, where each $x_i \in T$ and $x_1+2x_2+ \ldots + (p-1)x_{p-1}$ is divisible by $p$ and let $|E(T)|$ denote the number of elements in $E(T)$. Prove that \[|E(\{0,1,3\})| \geq |E(\{0,1,2\})|\] with equality if and only if $p = 5$.

1988 IMO Shortlist, 10

Let $ N \equal{} \{1,2 \ldots, n\}, n \geq 2.$ A collection $ F \equal{} \{A_1, \ldots, A_t\}$ of subsets $ A_i \subseteq N,$ $ i \equal{} 1, \ldots, t,$ is said to be separating, if for every pair $ \{x,y\} \subseteq N,$ there is a set $ A_i \in F$ so that $ A_i \cap \{x,y\}$ contains just one element. $ F$ is said to be covering, if every element of $ N$ is contained in at least one set $ A_i \in F.$ What is the smallest value $ f(n)$ of $ t,$ so there is a set $ F \equal{} \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering?

1989 IMO Shortlist, 22

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

2009 Serbia National Math Olympiad, 3

Determine the largest positive integer $n$ for which there exist pairwise different sets $\mathbb{S}_1 , ..., \mathbb{S}_n$ with the following properties: $1$) $|\mathbb{S}_i \cup \mathbb{S}_j | \leq 2004$ for any two indices $1 \leq i, j\leq n$, and $2$) $\mathbb{S}_i \cup \mathbb{S}_j \cup \mathbb{S}_k = \{ 1,2,...,2008 \}$ for any $1 \leq i < j < k \leq n$ [i]Proposed by Ivan Matic[/i]

1988 IMO Longlists, 7

Let $ n$ be an even positive integer. Let $ A_1, A_2, \ldots, A_{n \plus{} 1}$ be sets having $ n$ elements each such that any two of them have exactly one element in common while every element of their union belongs to at least two of the given sets. For which $ n$ can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $ \frac {n}{2}$ zeros?

1990 IMO Shortlist, 2

Given $ n$ countries with three representatives each, $ m$ committees $ A(1),A(2), \ldots, A(m)$ are called a cycle if [i](i)[/i] each committee has $ n$ members, one from each country; [i](ii)[/i] no two committees have the same membership; [i](iii)[/i] for $ i \equal{} 1, 2, \ldots,m$, committee $ A(i)$ and committee $ A(i \plus{} 1)$ have no member in common, where $ A(m \plus{} 1)$ denotes $ A(1);$ [i](iv)[/i] if $ 1 < |i \minus{} j| < m \minus{} 1,$ then committees $ A(i)$ and $ A(j)$ have at least one member in common. Is it possible to have a cycle of 1990 committees with 11 countries?

1967 IMO Shortlist, 4

In a group of interpreters each one speaks one of several foreign languages, 24 of them speak Japanese, 24 Malaysian, 24 Farsi. Prove that it is possible to select a subgroup in which exactly 12 interpreters speak Japanese, exactly 12 speak Malaysian and exactly 12 speak Farsi.

1988 IMO Shortlist, 5

Let $ n$ be an even positive integer. Let $ A_1, A_2, \ldots, A_{n \plus{} 1}$ be sets having $ n$ elements each such that any two of them have exactly one element in common while every element of their union belongs to at least two of the given sets. For which $ n$ can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $ \frac {n}{2}$ zeros?

2020 Iran MO (2nd Round), P1

Let $S$ is a finite set with $n$ elements. We divided $AS$ to $m$ disjoint parts such that if $A$, $B$, $A \cup B$ are in the same part, then $A=B.$ Find the minimum value of $m$.

1998 IMO Shortlist, 5

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

1990 IMO Longlists, 51

Determine for which positive integers $ k$ the set \[ X \equal{} \{1990, 1990 \plus{} 1, 1990 \plus{} 2, \ldots, 1990 \plus{} k\}\] can be partitioned into two disjoint subsets $ A$ and $ B$ such that the sum of the elements of $ A$ is equal to the sum of the elements of $ B.$

2008 South East Mathematical Olympiad, 1

Given a set $S=\{1,2,3,\ldots,3n\},(n\in N^*)$, let $T$ be a subset of $S$, such that for any $x, y, z\in T$ (not necessarily distinct) we have $x+y+z\not \in T$. Find the maximum number of elements $T$ can have.

2014 Cono Sur Olympiad, 6

Let $F$ be a family of subsets of $S = \left \{ 1,2,...,n \right \}$ ($n \geq 2$). A valid play is to choose two disjoint sets $A$ and $B$ from $F$ and add $A \cup B$ to $F$ (without removing $A$ and $B$). Initially, $F$ has all the subsets that contain only one element of $S$. The goal is to have all subsets of $n - 1$ elements of $S$ in $F$ using valid plays. Determine the lowest number of plays required in order to achieve the goal.

1990 IMO Shortlist, 15

Determine for which positive integers $ k$ the set \[ X \equal{} \{1990, 1990 \plus{} 1, 1990 \plus{} 2, \ldots, 1990 \plus{} k\}\] can be partitioned into two disjoint subsets $ A$ and $ B$ such that the sum of the elements of $ A$ is equal to the sum of the elements of $ B.$

2010 Turkey Junior National Olympiad, 3

In an exam every question is solved by exactly four students, every pair of questions is solved by exactly one student, and none of the students solved all of the questions. Find the maximum possible number of questions in this exam.

1989 IMO, 1

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

1979 IMO Shortlist, 12

Let $R$ be a set of exactly $6$ elements. A set $F$ of subsets of $R$ is called an $S$-family over $R$ if and only if it satisfies the following three conditions: (i) For no two sets $X, Y$ in $F$ is $X \subseteq Y$ ; (ii) For any three sets $X, Y,Z$ in $F$, $X \cup Y \cup Z \neq R,$ (iii) $\bigcup_{X \in F} X = R$