This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 42

1998 IMO Shortlist, 5

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

1988 IMO Shortlist, 5

Let $ n$ be an even positive integer. Let $ A_1, A_2, \ldots, A_{n \plus{} 1}$ be sets having $ n$ elements each such that any two of them have exactly one element in common while every element of their union belongs to at least two of the given sets. For which $ n$ can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $ \frac {n}{2}$ zeros?

1989 IMO Shortlist, 22

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

1988 IMO Longlists, 18

Let $ N \equal{} \{1,2 \ldots, n\}, n \geq 2.$ A collection $ F \equal{} \{A_1, \ldots, A_t\}$ of subsets $ A_i \subseteq N,$ $ i \equal{} 1, \ldots, t,$ is said to be separating, if for every pair $ \{x,y\} \subseteq N,$ there is a set $ A_i \in F$ so that $ A_i \cap \{x,y\}$ contains just one element. $ F$ is said to be covering, if every element of $ N$ is contained in at least one set $ A_i \in F.$ What is the smallest value $ f(n)$ of $ t,$ so there is a set $ F \equal{} \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering?

1988 IMO Shortlist, 10

Let $ N \equal{} \{1,2 \ldots, n\}, n \geq 2.$ A collection $ F \equal{} \{A_1, \ldots, A_t\}$ of subsets $ A_i \subseteq N,$ $ i \equal{} 1, \ldots, t,$ is said to be separating, if for every pair $ \{x,y\} \subseteq N,$ there is a set $ A_i \in F$ so that $ A_i \cap \{x,y\}$ contains just one element. $ F$ is said to be covering, if every element of $ N$ is contained in at least one set $ A_i \in F.$ What is the smallest value $ f(n)$ of $ t,$ so there is a set $ F \equal{} \{A_1, \ldots, A_t\}$ which is simultaneously separating and covering?

1987 IMO Shortlist, 18

For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1, 2, \cdots, h(r)\}$ into $r$ classes, there are integers $a \geq 0 \ ; 1 \leq x \leq y$, such that $a + x, a + y, a + x + y$ belong to the same class. [i]Proposed by Romania[/i]

2008 South East Mathematical Olympiad, 1

Given a set $S=\{1,2,3,\ldots,3n\},(n\in N^*)$, let $T$ be a subset of $S$, such that for any $x, y, z\in T$ (not necessarily distinct) we have $x+y+z\not \in T$. Find the maximum number of elements $T$ can have.

2010 Contests, 3

In an exam every question is solved by exactly four students, every pair of questions is solved by exactly one student, and none of the students solved all of the questions. Find the maximum possible number of questions in this exam.

1979 IMO Longlists, 46

Let $K$ denote the set $\{a, b, c, d, e\}$. $F$ is a collection of $16$ different subsets of $K$, and it is known that any three members of $F$ have at least one element in common. Show that all $16$ members of $F$ have exactly one element in common.

2002 IMO Shortlist, 5

Let $r\geq2$ be a fixed positive integer, and let $F$ be an infinite family of sets, each of size $r$, no two of which are disjoint. Prove that there exists a set of size $r-1$ that meets each set in $F$.

1998 IMO, 2

In a contest, there are $m$ candidates and $n$ judges, where $n\geq 3$ is an odd integer. Each candidate is evaluated by each judge as either pass or fail. Suppose that each pair of judges agrees on at most $k$ candidates. Prove that \[{\frac{k}{m}} \geq {\frac{n-1}{2n}}. \]

1967 IMO Shortlist, 4

In a group of interpreters each one speaks one of several foreign languages, 24 of them speak Japanese, 24 Malaysian, 24 Farsi. Prove that it is possible to select a subgroup in which exactly 12 interpreters speak Japanese, exactly 12 speak Malaysian and exactly 12 speak Farsi.

2017 Romanian Master of Mathematics, 3

Let $n$ be an integer greater than $1$ and let $X$ be an $n$-element set. A non-empty collection of subsets $A_1, ..., A_k$ of $X$ is tight if the union $A_1 \cup \cdots \cup A_k$ is a proper subset of $X$ and no element of $X$ lies in exactly one of the $A_i$s. Find the largest cardinality of a collection of proper non-empty subsets of $X$, no non-empty subcollection of which is tight. [i]Note[/i]. A subset $A$ of $X$ is proper if $A\neq X$. The sets in a collection are assumed to be distinct. The whole collection is assumed to be a subcollection.

2007 IMO Shortlist, 7

Let $ \alpha < \frac {3 \minus{} \sqrt {5}}{2}$ be a positive real number. Prove that there exist positive integers $ n$ and $ p > \alpha \cdot 2^n$ for which one can select $ 2 \cdot p$ pairwise distinct subsets $ S_1, \ldots, S_p, T_1, \ldots, T_p$ of the set $ \{1,2, \ldots, n\}$ such that $ S_i \cap T_j \neq \emptyset$ for all $ 1 \leq i,j \leq p$ [i]Author: Gerhard Wöginger, Austria[/i]

1988 IMO, 2

Let $ n$ be an even positive integer. Let $ A_1, A_2, \ldots, A_{n \plus{} 1}$ be sets having $ n$ elements each such that any two of them have exactly one element in common while every element of their union belongs to at least two of the given sets. For which $ n$ can one assign to every element of the union one of the numbers 0 and 1 in such a manner that each of the sets has exactly $ \frac {n}{2}$ zeros?

1987 IMO Longlists, 56

For any integer $r \geq 1$, determine the smallest integer $h(r) \geq 1$ such that for any partition of the set $\{1, 2, \cdots, h(r)\}$ into $r$ classes, there are integers $a \geq 0 \ ; 1 \leq x \leq y$, such that $a + x, a + y, a + x + y$ belong to the same class. [i]Proposed by Romania[/i]

2010 Turkey Junior National Olympiad, 3

In an exam every question is solved by exactly four students, every pair of questions is solved by exactly one student, and none of the students solved all of the questions. Find the maximum possible number of questions in this exam.