This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 10

2010 Brazil Team Selection Test, 2

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2010 Germany Team Selection Test, 3

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2009 IMO Shortlist, 2

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2024 Romanian Master of Mathematics, 4

Fix integers $a$ and $b$ greater than $1$. For any positive integer $n$, let $r_n$ be the (non-negative) remainder that $b^n$ leaves upon division by $a^n$. Assume there exists a positive integer $N$ such that $r_n < \frac{2^n}{n}$ for all integers $n\geq N$. Prove that $a$ divides $b$. [i]Pouria Mahmoudkhan Shirazi, Iran[/i]

2010 Ukraine Team Selection Test, 10

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2016 Balkan MO, 1

Tags: function , bounding , size
Find all injective functions $f: \mathbb R \rightarrow \mathbb R$ such that for every real number $x$ and every positive integer $n$,$$ \left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016$$ [i](Macedonia)[/i]

2010 Peru IMO TST, 2

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2010 Germany Team Selection Test, 3

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2010 Belarus Team Selection Test, 3.3

A positive integer $N$ is called [i]balanced[/i], if $N=1$ or if $N$ can be written as a product of an even number of not necessarily distinct primes. Given positive integers $a$ and $b$, consider the polynomial $P$ defined by $P(x)=(x+a)(x+b)$. (a) Prove that there exist distinct positive integers $a$ and $b$ such that all the number $P(1)$, $P(2)$,$\ldots$, $P(50)$ are balanced. (b) Prove that if $P(n)$ is balanced for all positive integers $n$, then $a=b$. [i]Proposed by Jorge Tipe, Peru[/i]

2016 Balkan MO Shortlist, A3

Tags: function , bounding , size
Find all injective functions $f: \mathbb R \rightarrow \mathbb R$ such that for every real number $x$ and every positive integer $n$,$$ \left|\sum_{i=1}^n i\left(f(x+i+1)-f(f(x+i))\right)\right|<2016$$ [i](Macedonia)[/i]