This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2024 Moldova EGMO TST, 2

Solve over non-negative integers the system $$ \begin{cases} x+y+z^2=xyz, \\ z\leq min(x,y). \end{cases} $$

2025 Kosovo National Mathematical Olympiad`, P4

Find all functions $f : \mathbb{N} \rightarrow \mathbb{N}$ for which these two conditions hold simultaneously (i) For all $m,n \in \mathbb{N}$ we have: $$ \frac{f(mn)}{\gcd(m,n)} = \frac{f(m)f(n)}{f(\gcd(m,n))};$$ (ii) For all prime numbers $p$, there exists a prime number $q$ such that $f(p^{2025})=q^{2025}$.