This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2018 Korea USCM, 5

A real symmetric $2018\times 2018$ matrix $A=(a_{ij})$ satisfies $|a_{ij}-2018|\leq 1$ for every $1\leq i,j\leq 2018$. Denote the largest eigenvalue of $A$ by $\lambda(A)$. Find maximum and minumum value of $\lambda(A)$.