This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1988 IMO Longlists, 61

Forty-nine students solve a set of 3 problems. The score for each problem is a whole number of points from 0 to 7. Prove that there exist two students $ A$ and $ B$ such that, for each problem, $ A$ will score at least as many points as $ B.$

1988 IMO Shortlist, 21

Forty-nine students solve a set of 3 problems. The score for each problem is a whole number of points from 0 to 7. Prove that there exist two students $ A$ and $ B$ such that, for each problem, $ A$ will score at least as many points as $ B.$