This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2015 Auckland Mathematical Olympiad, 2

On the table there are $2016$ coins. Two players play the following game making alternating moves. In one move it is allowed to take $1, 2$ or $3$ coins. The player who takes the last coin wins. Which player has a winning strategy?

2017 Puerto Rico Team Selection Test, 2

Ana and Beta play a turn-based game on a $m \times n$ board. Ana begins. At the beginning, there is a stone in the lower left square and the objective is to move it to the upper right corner. A move consists of the player moving the stone to the right or up as many squares as the player wants. Find all the values ​​of $(m, n)$ for which Ana can guarantee victory.