This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 56

1996 China Team Selection Test, 2

$S$ is the set of functions $f:\mathbb{N} \to \mathbb{R}$ that satisfy the following conditions: [b]I.[/b] $f(1) = 2$ [b]II.[/b] $f(n+1) \geq f(n) \geq \frac{n}{n + 1} f(2n)$ for $n = 1, 2, \ldots$ Find the smallest $M \in \mathbb{N}$ such that for any $f \in S$ and any $n \in \mathbb{N}, f(n) < M$.

2013 ELMO Shortlist, 2

Let $n$ be a fixed positive integer. Initially, $n$ 1's are written on a blackboard. Every minute, David picks two numbers $x$ and $y$ written on the blackboard, erases them, and writes the number $(x+y)^4$ on the blackboard. Show that after $n-1$ minutes, the number written on the blackboard is at least $2^{\frac{4n^2-4}{3}}$. [i]Proposed by Calvin Deng[/i]

2010 ELMO Shortlist, 7

The game of circulate is played with a deck of $kn$ cards each with a number in $1,2,\ldots,n$ such that there are $k$ cards with each number. First, $n$ piles numbered $1,2,\ldots,n$ of $k$ cards each are dealt out face down. The player then flips over a card from pile $1$, places that card face up at the bottom of the pile, then next flips over a card from the pile whose number matches the number on the card just flipped. The player repeats this until he reaches a pile in which every card has already been flipped and wins if at that point every card has been flipped. Hamster has grown tired of losing every time, so he decides to cheat. He looks at the piles beforehand and rearranges the $k$ cards in each pile as he pleases. When can Hamster perform this procedure such that he will win the game? [i]Brian Hamrick.[/i]

PEN K Problems, 27

Find all functions $f: \mathbb{N}\to \mathbb{N}$ such that for all $m,n\in \mathbb{N}$: \[f(f(m)+f(n))=m+n.\]

1990 Canada National Olympiad, 5

The function $f : \mathbb N \to \mathbb R$ satisfies $f(1) = 1, f(2) = 2$ and \[f (n+2) = f(n+2 - f(n+1) ) + f(n+1 - f(n) ).\] Show that $0 \leq f(n+1) - f(n) \leq 1$. Find all $n$ for which $f(n) = 1025$.

2007 Korea National Olympiad, 4

Two real sequence $ \{x_{n}\}$ and $ \{y_{n}\}$ satisfies following recurrence formula; $ x_{0}\equal{} 1$, $ y_{0}\equal{} 2007$ $ x_{n\plus{}1}\equal{} x_{n}\minus{}(x_{n}y_{n}\plus{}x_{n\plus{}1}y_{n\plus{}1}\minus{}2)(y_{n}\plus{}y_{n\plus{}1})$, $ y_{n\plus{}1}\equal{} y_{n}\minus{}(x_{n}y_{n}\plus{}x_{n\plus{}1}y_{n\plus{}1}\minus{}2)(x_{n}\plus{}x_{n\plus{}1})$ Then show that for all nonnegative integer $ n$, $ {x_{n}}^{2}\leq 2007$.