This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1999 Israel Grosman Mathematical Olympiad, 5

An infinite sequence of distinct real numbers is given. Prove that it contains a subsequence of $1999$ terms which is either monotonically increasing or monotonically decreasing.

1999 Singapore Senior Math Olympiad, 3

Let $\{a_1,a_2,...,a_{100}\}$ be a sequence of $100$ distinct real numbers. Show that there exists either an increasing subsequence $a_{i_1}<a_{i_2}<...<a_{i_{10}}$ $(i_1<i_2<...<i_{10})$ of $10$ numbers, or a decreasing subsequence $ a_{j_1}>a_{j_2}>...>a_{j_{12}}$ $(j_1<j_2<...<j_{12})$ of $12$ numbers, or both.