This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 27

2010 Postal Coaching, 2

Find all non-negative integers $m,n,p,q$ such that \[ p^mq^n = (p+q)^2 +1 . \]

2014-2015 SDML (High School), 6

Find the largest integer $k$ such that $$k\leq\sqrt{2}+\sqrt[3]{\frac{3}{2}}+\sqrt[4]{\frac{4}{3}}+\sqrt[5]{\frac{5}{4}}+\cdots+\sqrt[2015]{\frac{2015}{2014}}.$$