This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 5

2023 4th Memorial "Aleksandar Blazhevski-Cane", P2

Let $\mathbb{R}^{+}$ be the set of positive real numbers. Find all functions $f:\mathbb{R}^{+} \rightarrow \mathbb{R}^{+}$ such that for all $x,y>0$ we have $$f(xy+f(x))=yf(x)+x.$$ [i]Proposed by Nikola Velov[/i]

2013 Bogdan Stan, 2

Consider the parametric function $ f_k:\mathbb{R}\longrightarrow\mathbb{R}, f(x)=x+k\lfloor x \rfloor . $ [b]a)[/b] For which integer values of $ k $ the above function is injective? [b]b)[/b] For which integer values of $ k $ the above function is surjective? [b]c)[/b] Given two natural numbers $ n,m, $ create two bijective functions: $$ \phi : f_m (\mathbb{R} )\cap [0,\infty )\longrightarrow f_n(\mathbb{R})\cap [0,\infty ) $$ $$ \psi : \left(\mathbb{R}\setminus f_m (\mathbb{R})\right)\cap [0,\infty )\longrightarrow\left(\mathbb{R}\setminus f_n (\mathbb{R})\right)\cap [0,\infty ) $$ [i]Cristinel Mortici[/i]

2020 Bulgaria EGMO TST, 2

The function $f:\mathbb{R} \to \mathbb{R}$ is such that $f(f(x+1)) = x^3+1$ for all real numbers $x$. Prove that the equation $f(x) = 0 $ has exactly one real root.

2003 Gheorghe Vranceanu, 4

Find the number of functions $ f:\mathbb{N}\longrightarrow\mathbb{N} $ having the property that $ (f\circ f\circ f)(n)=n+3, $ for any natural numbers $ n. $

2006 Petru Moroșan-Trident, 1

Let be a natural number $ n\ge 4, $ and a group $ G $ for which the applications $ \iota ,\eta : G\longrightarrow G $ defined by $ \iota (g) =g^n ,\eta (g) =g^{2n} $ are endomorphisms. Prove that $ G $ is commutative if $ \iota $ is injective or surjective. [i]Gh. Andrei[/i]