This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 3

2023 CIIM, 3

Given a $3 \times 3$ symmetric real matrix $A$, we define $f(A)$ as a $3 \times 3$ matrix with the same eigenvectors of $A$ such that if $A$ has eigenvalues $a$, $b$, $c$, then $f(A)$ has eigenvalues $b+c$, $c+a$, $a+b$ (in that order). We define a sequence of symmetric real $3\times3$ matrices $A_0, A_1, A_2, \ldots$ such that $A_{n+1} = f(A_n)$ for $n \geq 0$. If the matrix $A_0$ has no zero entries, determine the maximum number of indices $j \geq 0$ for which the matrix $A_j$ has any null entries.

2024 CIIM, 2

Let $n$ be a positive integer, and let $M_n$ be the set of invertible matrices with integer entries and size $n \times n$. (a) Find the largest possible value of $n$ such that there exists a symmetric matrix $A \in M_n$ satisfying \[ \det(A^{20} + A^{24}) < 2024. \] (b) Prove that for every $n$, there exists a matrix $B \in M_n$ such that \[ \det(B^{20} + B^{24}) < 2024. \]

2021 IMC, 5

Let $A$ be a real $n \times n$ matrix and suppose that for every positive integer $m$ there exists a real symmetric matrix $B$ such that $$2021B = A^m+B^2.$$ Prove that $|\text{det} A| \leq 1$.