This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1982 Putnam, A4

Assume that the system of differential equations $y'=-z^3$, $z'=y^3$ with the initial conditions $y(0)=1$, $z(0)=0$ has a unique solution $y=f(x)$, $z=g(x)$ defined for real $x$. Prove that there exists a positive constant $L$ such that for all real $x$, $$f(x+L)=f(x),\enspace g(x+L)=g(x).$$