This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1954 Moscow Mathematical Olympiad, 281

*. Positive numbers $x_1, x_2, ..., x_{100}$ satisfy the system $$\begin{cases} x^2_1+ x^2_2+ ... + x^2_{100} > 10 000 \\ x_1 + x_2 + ...+ x_{100} < 300 \end{cases}$$ Prove that among these numbers there are three whose sum is greater than $100$.

1954 Moscow Mathematical Olympiad, 269

a) Given $100$ numbers $a_1, ..., a_{100}$ such that $\begin{cases} a_1 - 3a_2 + 2a_3 \ge 0, \\ a_2 - 3a_3 + 2a_4 \ge 0, \\ a_3 - 3a_4 + 2a_5 \ge 0, \\ ... \\ a_{99} - 3a_{100} + 2a_1 \ge 0, \\ a_{100} - 3a_1 + 2a_2 \ge 0 \end{cases}$ prove that the numbers are equal. b) Given numbers $a_1=1, ..., a_{100}$ such that $\begin{cases} a_1 - 4a_2 + 3a_3 \ge 0, \\ a_2 - 4a_3 + 3a_4 \ge 0, \\ a_3 - 4a_4 + 3a_5 \ge 0, \\ ... \\ a_{99} - 4a_{100} + 3a_1 \ge 0, \\ a_{100} - 4a_1 + 3a_2 \ge 0 \end{cases}$ Find $a_2, a_3, ... , a_{100}.$