This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2021 Romania National Olympiad, 3

Let $f :\mathbb R \to\mathbb R$ a function $ n \geq 2$ times differentiable so that: $ \lim_{x \to \infty} f(x) = l \in \mathbb R$ and $ \lim_{x \to \infty} f^{(n)}(x) = 0$. Prove that: $ \lim_{x \to \infty} f^{(k)}(x) = 0 $ for all $ k \in \{1, 2, \dots, n - 1\} $, where $f^{(k)}$ is the $ k $ - th derivative of $f$.

2024 Brazil Undergrad MO, 1

A positive integer \(n\) is called perfect if the sum of its positive divisors \(\sigma(n)\) is twice \(n\), that is, \(\sigma(n) = 2n\). For example, \(6\) is a perfect number since the sum of its positive divisors is \(1 + 2 + 3 + 6 = 12\), which is twice \(6\). Prove that if \(n\) is a positive perfect integer, then: \[ \sum_{p|n} \frac{1}{p + 1} < \ln 2 < \sum_{p|n} \frac{1}{p - 1} \] where the sums are taken over all prime divisors \(p\) of \(n\).