This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2006 Bosnia and Herzegovina Team Selection Test, 1

Let $Z$ shape be a shape such that it covers $(i,j)$, $(i,j+1)$, $(i+1,j+1)$, $(i+2,j+1)$ and $(i+2,j+2)$ where $(i,j)$ stands for cell in $i$-th row and $j$-th column on an arbitrary table. At least how many $Z$ shapes is necessary to cover one $8 \times 8$ table if every cell of a $Z$ shape is either cell of a table or it is outside the table (two $Z$ shapes can overlap and $Z$ shapes can rotate)?