This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2014 Korea - Final Round, 5

Let $p>5$ be a prime. Suppose that there exist integer $k$ such that $ k^2 + 5 $ is divisible by $p$. Prove that there exist two positive integers $m,n$ satisfying $ p^2 = m^2 + 5n^2 $.