This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2003 Romania National Olympiad, 2

Let be an odd natural number $ n\ge 3. $ Find all continuous functions $ f:[0,1]\longrightarrow\mathbb{R} $ that satisfy the following equalities. $$ \int_0^1 \left( f\left(\sqrt[k]{x}\right) \right)^{n-k} dx=k/n,\quad\forall k\in\{ 1,2,\ldots ,n-1\} $$ [i]Titu Andreescu[/i]