This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2024 Chile TST Ibero., 4

Prove that if \( a \), \( b \), and \( c \) are positive real numbers, then the following inequality holds: \[ \frac{a + 3c}{a + b} + \frac{c + 3a}{b + c} + \frac{4b}{c + a} \geq 6. \]

2024 Chile TST Ibero., 4

Prove that if \( a \), \( b \), and \( c \) are positive real numbers, then the following inequality holds: \[ \frac{a + 3c}{a + b} + \frac{c + 3a}{b + c} + \frac{4b}{c + a} \geq 6. \]