This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2024 Rioplatense Mathematical Olympiad, 3

Let $a$, $b$, $c$ be positive integers. Prove that for infinitely many positive odd integers $n$, there exists an integer $m > n$ such that $a^n + b^n + c^n$ divides $a^m + b^m + c^m$.