Found problems: 17
2012 Polish MO Finals, 4
$n$ players ($n \ge 4$) took part in the tournament. Each player played exactly one match with every other player, there were no draws. There was no four players $(A, B, C, D)$, such that $A$ won with $B$, $B$ won with $C$, $C$ won with $D$ and $D$ won with $A$. Determine, depending on $n$, maximum number of trios of players $(A, B, C)$, such that $A$ won with $B$, $B$ won with $C$ and $C$ won with $A$.
(Attention: Trios $(A, B, C)$, $(B, C, A)$ and $(C, A, B)$ are the same trio.)
2019 Taiwan TST Round 1, 3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2006 IMO Shortlist, 5
An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that:
$ (i)$ Each player plays in each round, and every two players meet at most once.
$ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$.
Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament.
[i]Proposed by Carlos di Fiore, Argentina[/i]
2019 India IMO Training Camp, P3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2019 Philippine TST, 6
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2012 European Mathematical Cup, 4
Let $k$ be a positive integer. At the European Chess Cup every pair of players played a game in which somebody won (there were no draws). For any $k$ players there was a player against whom they all lost, and the number of players was the least possible for such $k$. Is it possible that at the Closing Ceremony all the participants were seated at the round table in such a way that every participant was seated next to both a person he won against and a person he lost against.
[i]Proposed by Matija Bucić.[/i]
2020 Korea - Final Round, P2
There are $2020$ groups, each of which consists of a boy and a girl, such that each student is contained in exactly one group. Suppose that the students shook hands so that the following conditions are satisfied:
[list]
[*] boys didn't shake hands with boys, and girls didn't shake hands with girls;
[*] in each group, the boy and girl had shake hands exactly once;
[*] any boy and girl, each in different groups, didn't shake hands more than once;
[*] for every four students in two different groups, there are at least three handshakes.
[/list]
Prove that one can pick $4038$ students and arrange them at a circular table so that every two adjacent students had shake hands.
2007 Germany Team Selection Test, 2
An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that:
$ (i)$ Each player plays in each round, and every two players meet at most once.
$ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$.
Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament.
[i]Proposed by Carlos di Fiore, Argentina[/i]
2007 Germany Team Selection Test, 2
An $ (n, k) \minus{}$ tournament is a contest with $ n$ players held in $ k$ rounds such that:
$ (i)$ Each player plays in each round, and every two players meet at most once.
$ (ii)$ If player $ A$ meets player $ B$ in round $ i$, player $ C$ meets player $ D$ in round $ i$, and player $ A$ meets player $ C$ in round $ j$, then player $ B$ meets player $ D$ in round $ j$.
Determine all pairs $ (n, k)$ for which there exists an $ (n, k) \minus{}$ tournament.
[i]Proposed by Carlos di Fiore, Argentina[/i]
2023 German National Olympiad, 3
For a competition a school wants to nominate a team of $k$ students, where $k$ is a given positive integer. Each member of the team has to compete in the three disciplines juggling, singing and mental arithmetic. To qualify for the team, the $n \ge 2$ students of the school compete in qualifying competitions, determining a unique ranking in each of the three disciplines. The school now wants to nominate a team satisfying the following condition:
$(*)$ [i]If a student $X$ is not nominated for the team, there is a student $Y$ on the team who defeated $X$ in at least two disciplines.[/i]
Determine all positive integers $n \ge 2$ such that for any combination of rankings, a team can be chosen to satisfy the condition $(*)$, when
a) $k=2$,
b) $k=3$.
2021 Israel National Olympiad, P6
21 players participated in a tennis tournament, in which each pair of players played exactly once and each game had a winner (no ties are allowed).
The organizers of the tournament found out that each player won at least 9 games, and lost at least 9. In addition, they discovered cases of three players $A,B,C$ in which $A$ won against $B$, $B$ won against $C$ and $C$ won against $A$, and called such triples "problematic".
[b]a)[/b] What is the maximum possible number of problematic triples?
[b]b)[/b] What is the minimum possible number of problematic triples?
2023 OMpD, 1
Some friends formed $6$ football teams, and decided to hold a tournament where each team faces each other exactly once in a match. In each match, whoever wins gets $3$ points, whoever loses gets no points, and if the two teams draw, each gets $1$ point.
At the end of the tournament, it was found that the teams' scores were $10$, $9$, $6$, $6$, $4$ and $2$ points. Regarding this tournament, answer the following items, justifying your answer in each one.
(a) How many matches ended in a draw in the tournament?
(b) Determine, for each of the $6$ teams, the number of wins, draws and losses.
(c) If we consider only the matches played between the team that scored $9$ points against the two teams that scored $6$ points, and the one played between the two teams that scored $6$ points, explain why among these three matches, there are at least $2$ draws.
2016 Iran MO (3rd Round), 1
In an election, there are $1395$ candidates and some voters. Each voter, arranges all the candidates by the priority order.
We form a directed graph with $1395$ vertices, an arrow is directed from $U$ to $V$ when the candidate $U$ is at a higher level of priority than $V$ in more than half of the votes. (otherwise, there's no edge between $U,V$)
Is it possible to generate all complete directed graphs with $1395$ vertices?
2018 IMO Shortlist, C5
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2019 India IMO Training Camp, P3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.
2010 IMO Shortlist, 5
$n \geq 4$ players participated in a tennis tournament. Any two players have played exactly one game, and there was no tie game. We call a company of four players $bad$ if one player was defeated by the other three players, and each of these three players won a game and lost another game among themselves. Suppose that there is no bad company in this tournament. Let $w_i$ and $l_i$ be respectively the number of wins and losses of the $i$-th player. Prove that \[\sum^n_{i=1} \left(w_i - l_i\right)^3 \geq 0.\]
[i]Proposed by Sung Yun Kim, South Korea[/i]
2019 Thailand TST, 3
Let $k$ be a positive integer. The organising commitee of a tennis tournament is to schedule the matches for $2k$ players so that every two players play once, each day exactly one match is played, and each player arrives to the tournament site the day of his first match, and departs the day of his last match. For every day a player is present on the tournament, the committee has to pay $1$ coin to the hotel. The organisers want to design the schedule so as to minimise the total cost of all players' stays. Determine this minimum cost.