This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

1991 IMO Shortlist, 9

In the plane we are given a set $ E$ of 1991 points, and certain pairs of these points are joined with a path. We suppose that for every point of $ E,$ there exist at least 1593 other points of $ E$ to which it is joined by a path. Show that there exist six points of $ E$ every pair of which are joined by a path. [i]Alternative version:[/i] Is it possible to find a set $ E$ of 1991 points in the plane and paths joining certain pairs of the points in $ E$ such that every point of $ E$ is joined with a path to at least 1592 other points of $ E,$ and in every subset of six points of $ E$ there exist at least two points that are not joined?

1956 Putnam, B5

Show that a graph with 2n points and $n^2 + 1$ edges necessarily contains a 3-cycle, but that we can find a graph with 2n points and $n^2$ edges without a 3-cycle. please prove it without induction .