This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1961 Putnam, A5

Let $\Omega$ be a set of $n$ points, where $n>2$. Let $\Sigma$ be a nonempty subcollection of the $2^n$ subsets of $\Omega$ that is closed with respect to the unions, intersections and complements. If $k$ is the number of elements of $\Sigma,$ what are the possible values of $k?$