This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 2

2006 Lithuania National Olympiad, 4

Find the maximal cardinality $|S|$ of the subset $S \subset A=\{1, 2, 3, \dots, 9\}$ given that no two sums $a+b | a, b \in S, a \neq b$ are equal.

2000 Junior Balkan Team Selection Tests - Romania, 1

For each $ k\in\mathbb{N} ,k\le 2000, $ Let $ r_k $ be the remainder of the division of $ k $ by $ 4, $ and $ r'_k $ be the remainder of the division of $ k $ by $ 3. $ Prove that there is an unique $ m\in\mathbb{N} ,m\le 1999 $ such that $$ r_1+r_2+\cdots +r_m=r'_{m+1} +r'_{m+2} +\cdots r'_{2000} . $$ [i]Mircea Fianu[/i]