This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

1986 All Soviet Union Mathematical Olympiad, 429

A cube with edge of length $n$ ($n\ge 3$) consists of $n^3$ unit cubes. Prove that it is possible to write different $n^3$ integers on all the unit cubes to provide the zero sum of all integers in the every row parallel to some edge.