This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2008 District Olympiad, 4

Let be a finite field $ K. $ Say that two polynoms $ f,g $ from $ K[X] $ are [i]neighbours,[/i] if the have the same degree and they differ by exactly one coefficient. [b]a)[/b] Show that all the neighbours of $ 1+X^2 $ from $ \mathbb{Z}_3[X] $ are reducible in $ \mathbb{Z}_3[X] . $ [b]b)[/b] If $ |K|\ge 4, $ show that any polynomial of degree $ |K|-1 $ from $ K[X] $ has a neighbour from $ K[X] $ that is reducible in $ K[X] , $ and also has a neighbour that doesn´t have any root in $ K. $