This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 31

2024 All-Russian Olympiad Regional Round, 11.6

Tags: algebra , weight , easy
Teacher has 100 weights with masses $1$ g, $2$ g, $\dots$, $100$ g. He wants to give 30 weights to Petya and 30 weights to Vasya so that no 11 Petya's weights have the same total mass as some 12 Vasya's weights, and no 11 Vasya's weights have the same total mass as some 12 Petya's weights. Can the teacher do that?

2000 All-Russian Olympiad, 4

We are given five equal-looking weights of pairwise distinct masses. For any three weights $A$, $B$, $C$, we can check by a measuring if $m(A) < m(B) < m(C)$, where $m(X)$ denotes the mass of a weight $X$ (the answer is [i]yes[/i] or [i]no[/i].) Can we always arrange the masses of the weights in the increasing order with at most nine measurings?

2012 Serbia National Math Olympiad, 3

We are given $n>1$ piles of coins. There are two different types of coins: real and fake coins; they all look alike, but coins of the same type have the same mass, while the coins from different types have different masses. Coins that belong to the same pile are of the same type. We know the mass of real coin. Find the minimal number of weightings on digital scale that we need in order to conclude: which piles consists of which type of coins and also the mass of fake coin. (We assume that every pile consists from infinite number of coins.)

1989 Greece National Olympiad, 2

On the plane we consider $70$ points $A_1,A_2,...,A_{70}$ with integer coodinates. Suppose each pooints has weight $1$ and the centers of gravity of the triangles $ A_1A_2A_3$, $A_2A_3A_4$, $..$., $A_{68}A_{69}A_{70}$, $A_{69}A_{70}A_{1}$, $A_{70}A_{1}A_{2}$ have integer coodinates. Prove that the centers of gravity of any triple $A_i,A_j,...,A_{k}$ has integer coodinates.

2020 Bulgaria EGMO TST, 3

Ana has an iron material of mass $20.2$ kg. She asks Bilyana to make $n$ weights to be used in a classical weighning scale with two plates. Bilyana agrees under the condition that each of the $n$ weights is at least $10$ g. Determine the smallest possible value of $n$ for which Ana would always be able to determine the mass of any material (the mass can be any real number between $0$ and $20.2$ kg) with an error of at most $10$ g.

2012 Junior Balkan Team Selection Tests - Romania, 4

$100$ weights, measuring $1,2, ..., 100$ grams, respectively, are placed in the two pans of a scale such that the scale is balanced. Prove that two weights can be removed from each pan such that the equilibrium is not broken.