This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 1

2000 District Olympiad (Hunedoara), 3

Let be a function $ f:\mathbb{R}\longrightarrow\mathbb{R} $ such that: $ \text{(i)}\quad f(0)=0 $ $ \text{(ii)}\quad f'(x)\neq 0,\quad\forall x\in\mathbb{R} $ $ \text{(iii)}\quad \left. f''\right|_{\mathbb{R}}\text{ exists and it's continuous} $ Demonstrate that the function $ g:\mathbb{R}\longrightarrow\mathbb{R} $ defined as $$ g(x)=\left\{\begin{matrix}\cos\frac{1}{f(x)},\quad x\neq 0\\ 0,\quad x=0\end{matrix}\right. $$ is primitivable.