This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 85335

2023 Sharygin Geometry Olympiad, 6

Let $A_1, B_1, C_1$ be the feet of altitudes of an acute-angled triangle $ABC$. The incircle of triangle $A_1B_1C_1$ touches $A_1B_1, A_1C_1, B_1C_1$ at points $C_2, B_2, A_2$ respectively. Prove that the lines $AA_2, BB_2, CC_2$ concur at a point lying on the Euler line of triangle $ABC$.

2005 India IMO Training Camp, 2

Prove that one can find a $n_{0} \in \mathbb{N}$ such that $\forall m \geq n_{0}$, there exist three positive integers $a$, $b$ , $c$ such that (i) $m^3 < a < b < c < (m+1)^3$; (ii) $abc$ is the cube of an integer.

2016 ASDAN Math Tournament, 9

Tags: team test
A cake in the shape of a rectangular prism has dimensions $6\text{ cm}\times14\text{ cm}\times21\text{ cm}$. It is cut into $1764$ equally sized cubes such that each cube is $1\text{ cm}^3$. Andy the ant starts at one corner of the cake and eats through the cake in a straight line to the opposite corner of the cake. How many of the $1\text{ cm}^3$ cubes does Andy bite through?

2017 Thailand Mathematical Olympiad, 4

In a math competition, $14$ schools participate, each sending $14$ students. The students are separated into $14$ groups of $14$ so that no two students from the same school are in the same group. The tournament organizers noted that, from the competitors, exactly $15$ have participated in the competition before. The organizers want to select two representatives, with the conditions that they must be former participants, must come from different schools, and must also be in different groups. It turns out that there are $ n$ ways to do this. What is the minimum possible value of $n$?

2006 Kurschak Competition, 1

Tags: geometry
Is there a set $S\subset\mathbb{R}^3$ of $2006$ points such that not all its points are coplanar, no three of the points are collinear, and for any $A,B\in S$ we can find points $C,D\in S$ for which $AB||CD$?

2022 May Olympiad, 4

Ana and Bruno have an $8 \times 8$ checkered board. Ana paints each of the $64$ squares with some color. Then Bruno chooses two rows and two columns on the board and looks at the $4$ squares where they intersect. Bruno's goal is for these $4$ squares to be the same color. How many colors, at least, must Ana use so that Bruno can't fulfill his objective? Show how you can paint the board with this amount of colors and explain because if you use less colors then Bruno can always fulfill his goal.

2017 Princeton University Math Competition, A3/B5

Define the [i]bigness [/i]of a rectangular prism to be the sum of its volume, its surface area, and the lengths of all of its edges. Find the least integer $N$ for which there exists a rectangular prism with integer side lengths and [i]bigness [/i]$N$ and another one with integer side lengths and [i]bigness [/i]$N + 1$.

2005 IMC, 2

Tags:
2) all elements in {0,1,2}; B[n] = number of rows with no 2 sequent 0's; A[n] with no 3 sequent elements the same; prove |A[n+1]|=3.|B[n]|

2025 Sharygin Geometry Olympiad, 13

Each two opposite sides of a convex $2n$-gon are parallel. (Two sides are opposite if one passes $n-1$ other sides moving from one side to another along the borderline of the $2n$-gon.) The pair of opposite sides is called regular if there exists a common perpendicular to them such that its endpoints lie on the sides and not on their extensions. Which is the minimal possible number of regular pairs? Proposed by: B.Frenkin

2010 Pan African, 3

In an acute-angled triangle $ABC$, $CF$ is an altitude, with $F$ on $AB$, and $BM$ is a median, with $M$ on $CA$. Given that $BM=CF$ and $\angle MBC=\angle FCA$, prove that triangle $ABC$ is equilateral.

2016 IMO Shortlist, A1

Let $a$, $b$, $c$ be positive real numbers such that $\min(ab,bc,ca) \ge 1$. Prove that $$\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)} \le \left(\frac{a+b+c}{3}\right)^2 + 1.$$ [i]Proposed by Tigran Margaryan, Armenia[/i]

1984 Austrian-Polish Competition, 4

A regular heptagon $A_1A_2... A_7$ is inscribed in circle $C$. Point $P$ is taken on the shorter arc $A_7A_1$. Prove that $PA_1+PA_3+PA_5+PA_7 = PA_2+PA_4+PA_6$.

2018 Putnam, A2

Tags: determinant
Let $S_1, S_2, \dots, S_{2^n - 1}$ be the nonempty subsets of $\{1, 2, \dots, n\}$ in some order, and let $M$ be the $(2^n - 1) \times (2^n - 1)$ matrix whose $(i, j)$ entry is \[m_{ij} = \left\{ \begin{array}{cl} 0 & \text{if $S_i \cap S_j = \emptyset$}, \\ 1 & \text{otherwise}. \end{array} \right.\] Calculate the determinant of $M$.

2001 JBMO ShortLists, 10

Tags: geometry , incenter , ratio
A triangle $ABC$ is inscribed in the circle $\mathcal{C}(O,R)$. Let $\alpha <1$ be the ratio of the radii of the circles tangent to $\mathcal{C}$, and both of the rays $(AB$ and $(AC$. The numbers $\beta <1$ and $\gamma <1$ are defined analogously. Prove that $\alpha + \beta + \gamma =1$.

2022 Macedonian Team Selection Test, Problem 1

Let $n$ be a fixed positive integer. There are $n \geq 1$ lamps in a row, some of them are on and some are off. In a single move, we choose a positive integer $i$ ($1 \leq i \leq n$) and switch the state of the first $i$ lamps from the left. Determine the smallest number $k$ with the property that we can make all of the lamps be switched on using at most $k$ moves, no matter what the initial configuration was. [i]Proposed by Viktor Simjanoski and Nikola Velov[/i]

2016 China Western Mathematical Olympiad, 1

Tags: inequalities
Let $a,b,c,d$ be real numbers such that $abcd>0$. Prove that:There exists a permutation $x,y,z,w$ of $a,b,c,d$ such that $$2(xy+zw)^2>(x^2+y^2)(z^2+w^2)$$.

2006 Moldova National Olympiad, 10.8

Let $M=\{x^2+x \mid x\in \mathbb N^{\star} \}$. Prove that for every integer $k\geq 2$ there exist elements $a_{1}, a_{2}, \ldots, a_{k},b_{k}$ from $M$, such that $a_{1}+a_{2}+\cdots+a_{k}=b_{k}$.

2020/2021 Tournament of Towns, P3

Tags: geometry
There is an equilateral triangle $ABC$. Let $E, F$ and $K$ be points such that $E{}$ lies on side $AB$, $F{}$ lies on the side $AC$, $K{}$ lies on the extension of side $AB$ and $AE = CF = BK$. Let $P{}$ be the midpoint of the segment $EF$. Prove that the angle $KPC$ is right. [i]Vladimir Rastorguev[/i]

2023 Dutch BxMO TST, 1

Let $n \geq 1$ be an integer. Ruben takes a test with $n$ questions. Each question on this test is worth a different number of points. The first question is worth $1$ point, the second question $2$, the third $3$ and so on until the last question which is worth $n$ points. Each question can be answered either correctly or incorrectly. So an answer for a question can either be awarded all, or none of the points the question is worth. Let $f(n)$ be the number of ways he can take the test so that the number of points awarded equals the number of questions he answered incorrectly. Do there exist in finitely many pairs $(a; b)$ with $a < b$ and $f(a) = f(b)$?

1953 AMC 12/AHSME, 38

Tags:
If $ f(a)\equal{}a\minus{}2$ and $ F(a,b)\equal{}b^2\plus{}a$, then $ F(3,f(4))$ is: $ \textbf{(A)}\ a^2\minus{}4a\plus{}7 \qquad\textbf{(B)}\ 28 \qquad\textbf{(C)}\ 7 \qquad\textbf{(D)}\ 8 \qquad\textbf{(E)}\ 11$

2018 China Team Selection Test, 5

Suppose the real number $\lambda \in \left( 0,1\right),$ and let $n$ be a positive integer. Prove that the modulus of all the roots of the polynomial $$f\left ( x \right )=\sum_{k=0}^{n}\binom{n}{k}\lambda^{k\left ( n-k \right )}x^{k}$$ are $1.$

2015 Princeton University Math Competition, A2/B4

Tags: geometry
Terry the Tiger lives on a cube-shaped world with edge length $2$. Thus he walks on the outer surface. He is tied, with a leash of length $2$, to a post located at the center of one of the faces of the cube. The surface area of the region that Terry can roam on the cube can be represented as $\frac{p \pi}{q} + a\sqrt{b}+c$ for integers $a, b, c, p, q$ where no integer square greater than $1$ divides $b, p$ and $q$ are coprime, and $q > 0$. What is $p + q + a + b + c$? (Terry can be at a location if the shortest distance along the surface of the cube between that point and the post is less than or equal to $2$.)

2024 Silk Road, 1

Let $n$ be a positive integer and let $p, q>n$ be odd primes. Prove that the positive integers $1, 2, \ldots, n$ can be colored in $2$ colors, such that for any $x \neq y$ of the same color, $xy-1$ is not divisible by $p$ and $q$.

VI Soros Olympiad 1999 - 2000 (Russia), 9.2

Solve the equation $[x]\{x\} = 1999x$, where $[x]$ denotes the largest integer less than or equal to $x$, and $\{x\} = x -[x] $

2017 Purple Comet Problems, 15

For real numbers $a, b$, and $c$ the polynomial $p(x) = 3x^7 - 291x^6 + ax^5 + bx^4 + cx^2 + 134x - 2$ has $7$ real roots whose sum is $97$. Find the sum of the reciprocals of those $7$ roots.