This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

2025 China Team Selection Test, 15

Let \( X \) be a finite set of real numbers, \( d \) be a real number, and \(\lambda_1, \lambda_2, \cdots, \lambda_{2025}\) be 2025 non-zero real numbers. Define \[A = \left\{ (x_1, x_2, \cdots, x_{2025}) : x_1, x_2, \cdots, x_{2025} \in X \text{ and } \sum_{i=1}^{2025} \lambda_i x_i = d \right\},\] \[B = \left\{ (x_1, x_2, \cdots, x_{2024}) : x_1, x_2, \cdots, x_{2024} \in X \text{ and } \sum_{i=1}^{2024} (-1)^i x_i = 0 \right\},\] \[C = \left\{ (x_1, x_2, \cdots, x_{2026}) : x_1, x_2, \cdots, x_{2026} \in X \text{ and } \sum_{i=1}^{2026} (-1)^i x_i = 0 \right\}.\] Show that \( |A|^2 \leq |B| \cdot |C| \).

1992 IMO Shortlist, 8

Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions: [i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order; [i](ii)[/i] the polygon is circumscribable about a circle. [i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.

1989 IMO Shortlist, 22

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.

2015 India IMO Training Camp, 1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2017 Romanian Master of Mathematics, 1

[b](a)[/b] Prove that every positive integer $n$ can be written uniquely in the form \[n=\sum_{j=1}^{2k+1}(-1)^{j-1}2^{m_j},\] where $k\geq 0$ and $0\le m_1<m_2\cdots <m_{2k+1}$ are integers. This number $k$ is called [i]weight[/i] of $n$. [b](b)[/b] Find (in closed form) the difference between the number of positive integers at most $2^{2017}$ with even weight and the number of positive integers at most $2^{2017}$ with odd weight.

1993 IMO Shortlist, 2

Let $n,k \in \mathbb{Z}^{+}$ with $k \leq n$ and let $S$ be a set containing $n$ distinct real numbers. Let $T$ be a set of all real numbers of the form $x_1 + x_2 + \ldots + x_k$ where $x_1, x_2, \ldots, x_k$ are distinct elements of $S.$ Prove that $T$ contains at least $k(n-k)+1$ distinct elements.

1983 IMO Longlists, 51

Decide whether there exists a set $M$ of positive integers satisfying the following conditions: (i) For any natural number $m>1$ there exist $a, b \in M$ such that $a+b = m.$ (ii) If $a, b, c, d \in M$, $a, b, c, d > 10$ and $a + b = c + d$, then $a = c$ or $a = d.$

2014 India IMO Training Camp, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

1983 IMO Shortlist, 15

Decide whether there exists a set $M$ of positive integers satisfying the following conditions: (i) For any natural number $m>1$ there exist $a, b \in M$ such that $a+b = m.$ (ii) If $a, b, c, d \in M$, $a, b, c, d > 10$ and $a + b = c + d$, then $a = c$ or $a = d.$

2015 Belarus Team Selection Test, 1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2012 India IMO Training Camp, 3

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

2016 Brazil Team Selection Test, 4

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

2011 Israel National Olympiad, 1

We are given 5771 weights weighing 1,2,3,...,5770,5771. We partition the weights into $n$ sets of equal weight. What is the maximal $n$ for which this is possible?

2008 South East Mathematical Olympiad, 1

Given a set $S=\{1,2,3,\ldots,3n\},(n\in N^*)$, let $T$ be a subset of $S$, such that for any $x, y, z\in T$ (not necessarily distinct) we have $x+y+z\not \in T$. Find the maximum number of elements $T$ can have.

2016 Peru IMO TST, 7

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

2014 India IMO Training Camp, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2017 Romanian Masters In Mathematics, 1

[b](a)[/b] Prove that every positive integer $n$ can be written uniquely in the form \[n=\sum_{j=1}^{2k+1}(-1)^{j-1}2^{m_j},\] where $k\geq 0$ and $0\le m_1<m_2\cdots <m_{2k+1}$ are integers. This number $k$ is called [i]weight[/i] of $n$. [b](b)[/b] Find (in closed form) the difference between the number of positive integers at most $2^{2017}$ with even weight and the number of positive integers at most $2^{2017}$ with odd weight.

1979 IMO Longlists, 50

Let $m$ positive integers $a_1, \dots , a_m$ be given. Prove that there exist fewer than $2^m$ positive integers $b_1, \dots , b_n$ such that all sums of distinct $b_k$’s are distinct and all $a_i \ (i \leq m)$ occur among them.

2014 IMO Shortlist, N1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2012 India IMO Training Camp, 3

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

1995 IMO Shortlist, 7

Does there exist an integer $ n > 1$ which satisfies the following condition? The set of positive integers can be partitioned into $ n$ nonempty subsets, such that an arbitrary sum of $ n \minus{} 1$ integers, one taken from each of any $ n \minus{} 1$ of the subsets, lies in the remaining subset.

1976 IMO Shortlist, 12

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.

2001 Romania Team Selection Test, 3

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$

2014 Germany Team Selection Test, 1

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2014 German National Olympiad, 3

Given two positive integers $n$ and $k$, we say that $k$ is [i]$n$-ergetic[/i] if: However the elements of $M=\{1,2,\ldots, k\}$ are coloured in red and green, there exist $n$ not necessarily distinct integers of the same colour whose sum is again an element of $M$ of the same colour. For each positive integer $n$, determine the least $n$-ergetic integer, if it exists.