This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 83

2001 Romania Team Selection Test, 3

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$

1998 IMO Shortlist, 8

Let $a_{0},a_{1},a_{2},\ldots $ be an increasing sequence of nonnegative integers such that every nonnegative integer can be expressed uniquely in the form $a_{i}+2a_{j}+4a_{k}$, where $i,j$ and $k$ are not necessarily distinct. Determine $a_{1998}$.

1979 IMO Shortlist, 18

Let $m$ positive integers $a_1, \dots , a_m$ be given. Prove that there exist fewer than $2^m$ positive integers $b_1, \dots , b_n$ such that all sums of distinct $b_k$’s are distinct and all $a_i \ (i \leq m)$ occur among them.

2014 India IMO Training Camp, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2014 Belarus Team Selection Test, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2016 Taiwan TST Round 1, 6

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

2011 IMO Shortlist, 4

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

2009 China Team Selection Test, 2

Find all the pairs of integers $ (a,b)$ satisfying $ ab(a \minus{} b)\not \equal{} 0$ such that there exists a subset $ Z_{0}$ of set of integers $ Z,$ for any integer $ n$, exactly one among three integers $ n,n \plus{} a,n \plus{} b$ belongs to $ Z_{0}$.

2011 Israel National Olympiad, 1

We are given 5771 weights weighing 1,2,3,...,5770,5771. We partition the weights into $n$ sets of equal weight. What is the maximal $n$ for which this is possible?

2014 Taiwan TST Round 1, 2

Let $n$ be an positive integer. Find the smallest integer $k$ with the following property; Given any real numbers $a_1 , \cdots , a_d $ such that $a_1 + a_2 + \cdots + a_d = n$ and $0 \le a_i \le 1$ for $i=1,2,\cdots ,d$, it is possible to partition these numbers into $k$ groups (some of which may be empty) such that the sum of the numbers in each group is at most $1$.

2008 South East Mathematical Olympiad, 1

Given a set $S=\{1,2,3,\ldots,3n\},(n\in N^*)$, let $T$ be a subset of $S$, such that for any $x, y, z\in T$ (not necessarily distinct) we have $x+y+z\not \in T$. Find the maximum number of elements $T$ can have.

1990 IMO Shortlist, 1

The integer $ 9$ can be written as a sum of two consecutive integers: $ 9 \equal{} 4\plus{}5.$ Moreover, it can be written as a sum of (more than one) consecutive positive integers in exactly two ways: $ 9 \equal{} 4\plus{}5 \equal{} 2\plus{}3\plus{}4.$ Is there an integer that can be written as a sum of $ 1990$ consecutive integers and that can be written as a sum of (more than one) consecutive positive integers in exactly $ 1990$ ways?

2012 USA TSTST, 1

Find all infinite sequences $a_1, a_2, \ldots$ of positive integers satisfying the following properties: (a) $a_1 < a_2 < a_3 < \cdots$, (b) there are no positive integers $i$, $j$, $k$, not necessarily distinct, such that $a_i+a_j=a_k$, (c) there are infinitely many $k$ such that $a_k = 2k-1$.

1992 IMO Longlists, 29

Show that in the plane there exists a convex polygon of 1992 sides satisfying the following conditions: [i](i)[/i] its side lengths are $ 1, 2, 3, \ldots, 1992$ in some order; [i](ii)[/i] the polygon is circumscribable about a circle. [i]Alternative formulation:[/i] Does there exist a 1992-gon with side lengths $ 1, 2, 3, \ldots, 1992$ circumscribed about a circle? Answer the same question for a 1990-gon.

2015 India IMO Training Camp, 1

Let $n \ge 2$ be an integer, and let $A_n$ be the set \[A_n = \{2^n - 2^k\mid k \in \mathbb{Z},\, 0 \le k < n\}.\] Determine the largest positive integer that cannot be written as the sum of one or more (not necessarily distinct) elements of $A_n$ . [i]Proposed by Serbia[/i]

2012 India IMO Training Camp, 3

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

2012 Belarus Team Selection Test, 3

Determine the greatest positive integer $k$ that satisfies the following property: The set of positive integers can be partitioned into $k$ subsets $A_1, A_2, \ldots, A_k$ such that for all integers $n \geq 15$ and all $i \in \{1, 2, \ldots, k\}$ there exist two distinct elements of $A_i$ whose sum is $n.$ [i]Proposed by Igor Voronovich, Belarus[/i]

2015 IMO Shortlist, C6

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

1997 Romania Team Selection Test, 2

Find the number of sets $A$ containing $9$ positive integers with the following property: for any positive integer $n\le 500$, there exists a subset $B\subset A$ such that $\sum_{b\in B}{b}=n$. [i]Bogdan Enescu & Dan Ismailescu[/i]

2008 Germany Team Selection Test, 3

Let $ X$ be a set of 10,000 integers, none of them is divisible by 47. Prove that there exists a 2007-element subset $ Y$ of $ X$ such that $ a \minus{} b \plus{} c \minus{} d \plus{} e$ is not divisible by 47 for any $ a,b,c,d,e \in Y.$ [i]Author: Gerhard Wöginger, Netherlands[/i]

2016 Brazil Team Selection Test, 4

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

1976 IMO Longlists, 48

The polynomial $1976(x+x^2+ \cdots +x^n)$ is decomposed into a sum of polynomials of the form $a_1x + a_2x^2 + \cdots + a_nx^n$, where $a_1, a_2, \ldots , a_n$ are distinct positive integers not greater than $n$. Find all values of $n$ for which such a decomposition is possible.

2014 Peru IMO TST, 16

Let $n$ be a positive integer, and let $A$ be a subset of $\{ 1,\cdots ,n\}$. An $A$-partition of $n$ into $k$ parts is a representation of n as a sum $n = a_1 + \cdots + a_k$, where the parts $a_1 , \cdots , a_k $ belong to $A$ and are not necessarily distinct. The number of different parts in such a partition is the number of (distinct) elements in the set $\{ a_1 , a_2 , \cdots , a_k \} $. We say that an $A$-partition of $n$ into $k$ parts is optimal if there is no $A$-partition of $n$ into $r$ parts with $r<k$. Prove that any optimal $A$-partition of $n$ contains at most $\sqrt[3]{6n}$ different parts.

2016 Belarus Team Selection Test, 3

Let $S$ be a nonempty set of positive integers. We say that a positive integer $n$ is [i]clean[/i] if it has a unique representation as a sum of an odd number of distinct elements from $S$. Prove that there exist infinitely many positive integers that are not clean.

1989 IMO, 1

Prove that in the set $ \{1,2, \ldots, 1989\}$ can be expressed as the disjoint union of subsets $ A_i, \{i \equal{} 1,2, \ldots, 117\}$ such that [b]i.)[/b] each $ A_i$ contains 17 elements [b]ii.)[/b] the sum of all the elements in each $ A_i$ is the same.