Found problems: 320
2020 USA TSTST, 2
Let $ABC$ be a scalene triangle with incenter $I$. The incircle of $ABC$ touches $\overline{BC},\overline{CA},\overline{AB}$ at points $D,E,F$, respectively. Let $P$ be the foot of the altitude from $D$ to $\overline{EF}$, and let $M$ be the midpoint of $\overline{BC}$. The rays $AP$ and $IP$ intersect the circumcircle of triangle $ABC$ again at points $G$ and $Q$, respectively. Show that the incenter of triangle $GQM$ coincides with $D$.
[i]Zack Chroman and Daniel Liu[/i]
2009 Oral Moscow Geometry Olympiad, 3
Altitudes $AA_1$ and $BB_1$ are drawn in the acute-angled triangle $ABC$. Prove that the perpendicular drawn from the touchpoint of the inscribed circle with the side $BC$, on the line $AC$ passes through the center of the inscribed circle of the triangle $A_1CB_1$.
(V. Protasov)
1999 Tournament Of Towns, 5
The sides $AB$ and $AC$ are tangent at points $P$ and $Q$, respectively, to the incircle of a triangle $ABC. R$ and $S$ are the midpoints of the sides $AC$ and $BC$, respectively, and $T$ is the intersection point of the lines $PQ$ and $RS$. Prove that $T$ lies on the bisector of the angle $B$ of the triangle.
(M Evdokimov)
2015 Postal Coaching, Problem 4
Let $ABC$ be at triangle with incircle $\Gamma$. Let $\Gamma_1$, $\Gamma_2$, $\Gamma_3$ be three circles inside $\triangle ABC$ each of which is tangent to $\Gamma$ and two sides of the triangle and their radii are $1,4,9$. Find the radius of $\Gamma$.
2019 Mediterranean Mathematics Olympiad, 1
Let $\Delta ABC$ be a triangle with angle $\angle CAB=60^{\circ}$, let $D$ be the intersection point of the angle bisector at $A$ and the side $BC$, and let $r_B,r_C,r$ be the respective radii of the incircles of $ABD$, $ADC$, $ABC$. Let $b$ and $c$ be the lengths of sides $AC$ and $AB$ of the triangle. Prove that
\[ \frac{1}{r_B} +\frac{1}{r_C} ~=~ 2\cdot\left( \frac1r +\frac1b +\frac1c\right)\]
2014 Junior Balkan Team Selection Tests - Romania, 4
In the acute triangle $ABC$, with $AB \ne BC$, let $T$ denote the midpoint of the side $[AC], A_1$ and $C_1$ denote the feet of the altitudes drawn from $A$ and $C$, respectively. Let $Z$ be the intersection point of the tangents in $A$ and $C $ to the circumcircle of triangle $ABC, X$ be the intersection point of lines $ZA$ and $A_1C_1$ and $Y$ be the intersection point of lines $ZC$ and $A_1C_1$.
a) Prove that $T$ is the incircle of triangle $XYZ$.
b) The circumcircles of triangles $ABC$ and $A_1BC_1$ meet again at $D$. Prove that the orthocenter $H$ of triangle $ABC$ is on the line $TD$.
c) Prove that the point $D$ lies on the circumcircle of triangle $XYZ$.
1970 IMO Shortlist, 8
$M$ is any point on the side $AB$ of the triangle $ABC$. $r,r_1,r_2$ are the radii of the circles inscribed in $ABC,AMC,BMC$. $q$ is the radius of the circle on the opposite side of $AB$ to $C$, touching the three sides of $AB$ and the extensions of $CA$ and $CB$. Similarly, $q_1$ and $q_2$. Prove that $r_1r_2q=rq_1q_2$.
2010 Ukraine Team Selection Test, 2
Let $ABCD$ be a quadrilateral inscribled in a circle with the center $O, P$ be the point of intersection of the diagonals $AC$ and $BD$, $BC\nparallel AD$. Rays $AB$ and $DC$ intersect at the point $E$. The circle with center $I$ inscribed in the triangle $EBC$ touches $BC$ at point $T_1$. The $E$-excircle with center $J$ in the triangle $EAD$ touches the side $AD$ at the point T$_2$. Line $IT_1$ and $JT_2$ intersect at $Q$. Prove that the points $O, P$, and $Q$ lie on a straight line.
2018 India PRMO, 5
Let $ABCD$ be a trapezium in which $AB //CD$ and $AD \perp AB$. Suppose $ABCD$ has an incircle which touches $AB$ at $Q$ and $CD$ at $P$. Given that $PC = 36$ and $QB = 49$, find $PQ$.
2013 Thailand Mathematical Olympiad, 12
Let $\omega$ be the incircle of $\vartriangle ABC$, $\omega$ is tangent to sides $BC$ and $AC$ at $D$ and $E$ respectively. The line perpendicular to $BC$ at $D$ intersects $\omega$ again at $P$. Lines $AP$ and $BC$ intersect at $M$. Let $N$ be a point on segment $AC$ so that $AE = CN$. Line $BN$ intersects $\omega$ at $Q$ (closer to $B$) and intersect $AM$ at $R$. Show that the area of $\vartriangle ABR$ is equal to the area of $PQMN$.
2017 Bosnia and Herzegovina Junior BMO TST, 3
Let $ABC$ be a triangle such that $\angle ABC = 90 ^{\circ}$. Let $I$ be an incenter of $ABC$ and let $F$, $D$ and $E$ be points where incircle touches sides $AB$, $BC$ and $AC$, respectively. If lines $CI$ and $EF$ intersect at point $M$ and if $DM$ and $AB$ intersect in $N$, prove that $AI=ND$
Estonia Open Senior - geometry, 2000.2.4
The diagonals of the square $ABCD$ intersect at $P$ and the midpoint of the side $AB$ is $E$. Segment $ED$ intersects the diagonal $AC$ at point $F$ and segment $EC$ intersects the diagonal $BD$ at $G$. Inside the quadrilateral $EFPG$, draw a circle of radius $r$ tangent to all the sides of this quadrilateral. Prove that $r = | EF | - | FP |$.
2021-IMOC, G7
The incircle of triangle $ABC$ tangents $BC$, $CA$, $AB$ at $D$, $E$, $F$, respectively. Let the tangents of $E$, $F$ with respect to $\odot(AEF)$ intersect at $P$, and $X$ be a point on $BC$ such that $EF$, $DP$, $AX$ are concurrent. Define $Q$, $Y$ and $R$, $Z$ similarly. Show that $X$, $Y$, $Z$ are collinear.
Kyiv City MO Seniors 2003+ geometry, 2014.11.4
In the triangle $ABC$, for which $AC <AB <BC$, on the sides $AB$ and $BC$ the points $K$ and $N$ were chosen, respectively, that $KA = AC = CN$. The lines $AN$ and $CK$ intersect at the point $O$. From the point $O$ held the segment $OM \perp AC $ ($M \in AC$) . Prove that the circles inscribed in triangles $ABM$ and $CBM$ are tangent.
(Igor Nagel)
2019 Saudi Arabia IMO TST, 3
Let $ABC$ be an acute nonisosceles triangle with incenter $I$ and $(d)$ is an arbitrary line tangent to $(I)$ at $K$. The lines passes through $I$, perpendicular to $IA, IB, IC$ cut $(d)$ at $A_1, B_1,C_1$ respectively. Suppose that $(d)$ cuts $BC, CA, AB$ at $M,N, P$ respectively. The lines through $M,N,P$ and respectively parallel to the internal bisectors of $A, B, C$ in triangle $ABC$ meet each other to define a triange $XYZ$. Prove that three lines $AA_1, BB_1, CC_1$ are concurrent and $IK$ is tangent to the circle $(XY Z)$
2011 China Northern MO, 2
As shown in figure , the inscribed circle of $ABC$ is intersects $BC$, $CA$, $AB$ at points $D$, $E$, $F$, repectively, and $P$ is a point inside the inscribed circle. The line segments $PA$, $PB$ and $PC$ intersect respectively the inscribed circle at points $X$, $Y$ and $Z$. Prove that the three lines $XD$, $YE$ and $ZF$ have a common point.
[img]https://cdn.artofproblemsolving.com/attachments/e/9/bbfb0394b9db7aa5fb1e9a869134f0bca372c1.png[/img]
Mathley 2014-15, 5
Triangle $ABC$ has incircle $(I)$ and $P,Q$ are two points in the plane of the triangle. Let $QA,QB,QC$ meet $BA,CA,AB$ respectively at $D,E,F$. The tangent at $D$, other than $BC$, of the circle $(I)$ meets $PA$ at $X$. The points $Y$ and $Z$ are defined in the same manner. The tangent at $X$, other than $XD$, of the circle $(I)$ meets $ (I)$ at $U$. The points $V,W$ are defined in the same way. Prove that three lines $(AU,BV,CW)$ are concurrent.
Tran Quang Hung, Dean of the Faculty of Science, Thanh Xuan, Hanoi.
2021 Adygea Teachers' Geometry Olympiad, 2
In triangle $ABC$, the incircle touches the side $AC$ at point $B_1$ and one excircle is touching the same side at point $B_2$. It is known that the segments $BB_1$ and $BB_2$ are equal. Is it true that $\vartriangle ABC$ is isosceles?
2020 Yasinsky Geometry Olympiad, 1
Given an acute triangle $ABC$. A circle inscribed in a triangle $ABC$ with center at point $I$ touches the sides $AB, BC$ at points $C_1$ and $A_1$, respectively. The lines $A_1C_1$ and $AC$ intersect at the point $Q$. Prove that the circles circumscribed around the triangles $AIC$ and $A_1CQ$ are tangent.
(Dmitry Shvetsov)
2010 Sharygin Geometry Olympiad, 5
The incircle of a right-angled triangle $ABC$ ($\angle ABC =90^o$) touches $AB, BC, AC$ in points $C_1, A_1, B_1$, respectively. One of the excircles touches the side $BC$ in point $A_2$. Point $A_0$ is the circumcenter or triangle $A_1A_2B_1$, point $C_0$ is defined similarly. Find angle $A_0BC_0$.
2018 Yasinsky Geometry Olympiad, 5
The inscribed circle of the triangle $ABC$ touches its sides $AB, BC, CA$, at points $K,N, M$ respectively. It is known that $\angle ANM = \angle CKM$. Prove that the triangle $ABC$ is isosceles.
(Vyacheslav Yasinsky)
2020 Kazakhstan National Olympiad, 4
The incircle of the triangle $ ABC $ touches the sides of $ AB, BC, CA $ at points $ C_0, A_0, B_0 $, respectively. Let the point $ M $ be the midpoint of the segment connecting the vertex $ C_0 $ with the intersection point of the altitudes of the triangle $ A_0B_0C_0 $, point $ N $ be the midpoint of the arc $ ACB $ of the circumscribed circle of the triangle $ ABC $. Prove that line $ MN $ passes through the center of incircle of triangle $ ABC $.
2005 Alexandru Myller, 2
Let be a point $ P $ inside a triangle $ ABC. $ Prove that the following relations are equivalent:
$ \text{(i)} $ Any collinear triple of points $ (E,P,F) $ with $ E,F $ on $ AB,AC, $ respectively, verifies the equality
$$ \frac{1}{AE} +\frac{1}{AF} =\frac{AB+BC+CA}{AB\cdot AC} $$
$ \text{(ii)} P $ is the incircle of $ ABC $
Durer Math Competition CD 1st Round - geometry, 2018.D+4
The center of the inscribed circle of triangle $ABC$ is $I$. Let $e$ be the perpendicular line on $CI$ passing through $I$. The line $e$ itnersects the side $AC$ at $A'$ and the side $BC$ at point $B'$. Let $A''$ be the symmetric point of $A$ wrt $A'$, $B''$ be the symmetric point of $B$ wrt $B'$. Prove that $A''B''$ is a line tangent to the incircle.
2019 Paraguay Mathematical Olympiad, 5
A circle of radius $4$ is inscribed in a triangle $ABC$. We call $D$ the touchpoint between the circle and side BC. Let $CD =8$, $DB= 10$. What is the length of the sides $AB$ and $AC$?