This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 116

1975 IMO, 2

Let $a_{1}, \ldots, a_{n}$ be an infinite sequence of strictly positive integers, so that $a_{k} < a_{k+1}$ for any $k.$ Prove that there exists an infinity of terms $ a_{m},$ which can be written like $a_m = x \cdot a_p + y \cdot a_q$ with $x,y$ strictly positive integers and $p \neq q.$

1979 IMO Shortlist, 18

Let $m$ positive integers $a_1, \dots , a_m$ be given. Prove that there exist fewer than $2^m$ positive integers $b_1, \dots , b_n$ such that all sums of distinct $b_k$’s are distinct and all $a_i \ (i \leq m)$ occur among them.

2000 IMO Shortlist, 6

Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.

PEN P Problems, 26

Let $a, b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x, y, z \in \mathbb{N}_{0}$

PEN P Problems, 7

Prove that every integer $n \ge 12$ is the sum of two composite numbers.

PEN P Problems, 28

Prove that any positive integer can be represented as a sum of Fibonacci numbers, no two of which are consecutive.

1969 IMO Shortlist, 13

$(CZS 2)$ Let $p$ be a prime odd number. Is it possible to find $p-1$ natural numbers $n + 1, n + 2, . . . , n + p -1$ such that the sum of the squares of these numbers is divisible by the sum of these numbers?

1992 IMO, 3

For each positive integer $\,n,\;S(n)\,$ is defined to be the greatest integer such that, for every positive integer $\,k\leq S(n),\;n^{2}\,$ can be written as the sum of $\,k\,$ positive squares. [b]a.)[/b] Prove that $\,S(n)\leq n^{2}-14\,$ for each $\,n\geq 4$. [b]b.)[/b] Find an integer $\,n\,$ such that $\,S(n)=n^{2}-14$. [b]c.)[/b] Prove that there are infintely many integers $\,n\,$ such that $S(n)=n^{2}-14.$

1969 IMO Shortlist, 18

$(FRA 1)$ Let $a$ and $b$ be two nonnegative integers. Denote by $H(a, b)$ the set of numbers $n$ of the form $n = pa + qb,$ where $p$ and $q$ are positive integers. Determine $H(a) = H(a, a)$. Prove that if $a \neq b,$ it is enough to know all the sets $H(a, b)$ for coprime numbers $a, b$ in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers $a$ and $b, H(a, b)$ contains all numbers greater than or equal to $\omega = (a - 1)(b -1)$ and also $\frac{\omega}{2}$ numbers smaller than $\omega$

PEN P Problems, 3

Prove that infinitely many positive integers cannot be written in the form \[{x_{1}}^{3}+{x_{2}}^{5}+{x_{3}}^{7}+{x_{4}}^{9}+{x_{5}}^{11},\] where $x_{1}, x_{2}, x_{3}, x_{4}, x_{5}\in \mathbb{N}$.

2017 Baltic Way, 3

Positive integers $x_1,...,x_m$ (not necessarily distinct) are written on a blackboard. It is known that each of the numbers $F_1,...,F_{2018}$ can be represented as a sum of one or more of the numbers on the blackboard. What is the smallest possible value of $m$? (Here $F_1,...,F_{2018}$ are the first $2018$ Fibonacci numbers: $F_1=F_2=1, F_{k+1}=F_k+F_{k-1}$ for $k>1$.)

PEN P Problems, 41

The famous conjecture of Goldbach is the assertion that every even integer greater than $2$ is the sum of two primes. Except $2$, $4$, and $6$, every even integer is a sum of two positive composite integers: $n=4+(n-4)$. What is the largest positive even integer that is not a sum of two odd composite integers?

PEN P Problems, 15

Find all integers $m>1$ such that $m^3$ is a sum of $m$ squares of consecutive integers.

PEN P Problems, 6

Show that every integer greater than $1$ can be written as a sum of two square-free integers.

1979 IMO Longlists, 69

Let $N$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$, and let $M$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3 + 1\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$. Prove that $N >M.$

2000 IMO Shortlist, 6

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$

1979 IMO Shortlist, 21

Let $N$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$, and let $M$ be the number of integral solutions of the equation \[x^2 - y^2 = z^3 - t^3 + 1\] satisfying the condition $0 \leq x, y, z, t \leq 10^6$. Prove that $N >M.$

1992 IMO Shortlist, 15

Does there exist a set $ M$ with the following properties? [i](i)[/i] The set $ M$ consists of 1992 natural numbers. [i](ii)[/i] Every element in $ M$ and the sum of any number of elements have the form $ m^k$ $ (m, k \in \mathbb{N}, k \geq 2).$

PEN P Problems, 9

The integer $9$ can be written as a sum of two consecutive integers: 9=4+5. Moreover it can be written as a sum of (more than one) consecutive positive integers in exactly two ways, namely 9=4+5= 2+3+4. Is there an integer which can be written as a sum of $1990$ consecutive integers and which can be written as a sum of (more than one) consecutive positive integers in exactly $1990$ ways?

PEN P Problems, 43

A positive integer $n$ is abundant if the sum of its proper divisors exceeds $n$. Show that every integer greater than $89 \times 315$ is the sum of two abundant numbers.

1983 IMO Longlists, 27

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

1969 IMO Longlists, 25

$(GBR 2)$ Let $a, b, x, y$ be positive integers such that $a$ and $b$ have no common divisor greater than $1$. Prove that the largest number not expressible in the form $ax + by$ is $ab - a - b$. If $N(k)$ is the largest number not expressible in the form $ax + by$ in only $k$ ways, find $N(k).$

1992 IMO Longlists, 34

Let $a, b, c$ be integers. Prove that there are integers $p_1, q_1, r_1, p_2, q_2, r_2$ such that \[a = q_1r_2 - q_2r_1, b = r_1p_2 - r_2p_1, c = p_1q_2 - p_2q_1.\]

1992 IMO Shortlist, 21

For each positive integer $\,n,\;S(n)\,$ is defined to be the greatest integer such that, for every positive integer $\,k\leq S(n),\;n^{2}\,$ can be written as the sum of $\,k\,$ positive squares. [b]a.)[/b] Prove that $\,S(n)\leq n^{2}-14\,$ for each $\,n\geq 4$. [b]b.)[/b] Find an integer $\,n\,$ such that $\,S(n)=n^{2}-14$. [b]c.)[/b] Prove that there are infintely many integers $\,n\,$ such that $S(n)=n^{2}-14.$

2012 ELMO Shortlist, 3

Let $s(k)$ be the number of ways to express $k$ as the sum of distinct $2012^{th}$ powers, where order does not matter. Show that for every real number $c$ there exists an integer $n$ such that $s(n)>cn$. [i]Alex Zhu.[/i]