This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 116

1969 IMO Shortlist, 18

$(FRA 1)$ Let $a$ and $b$ be two nonnegative integers. Denote by $H(a, b)$ the set of numbers $n$ of the form $n = pa + qb,$ where $p$ and $q$ are positive integers. Determine $H(a) = H(a, a)$. Prove that if $a \neq b,$ it is enough to know all the sets $H(a, b)$ for coprime numbers $a, b$ in order to know all the sets $H(a, b)$. Prove that in the case of coprime numbers $a$ and $b, H(a, b)$ contains all numbers greater than or equal to $\omega = (a - 1)(b -1)$ and also $\frac{\omega}{2}$ numbers smaller than $\omega$

PEN P Problems, 36

Let $k$ and $s$ be odd positive integers such that \[\sqrt{3k-2}-1 \le s \le \sqrt{4k}.\] Show that there are nonnegative integers $t$, $u$, $v$, and $w$ such that \[k=t^{2}+u^{2}+v^{2}+w^{2}, \;\; \text{and}\;\; s=t+u+v+w.\]

PEN P Problems, 41

The famous conjecture of Goldbach is the assertion that every even integer greater than $2$ is the sum of two primes. Except $2$, $4$, and $6$, every even integer is a sum of two positive composite integers: $n=4+(n-4)$. What is the largest positive even integer that is not a sum of two odd composite integers?

1966 IMO Longlists, 11

Does there exist an integer $z$ that can be written in two different ways as $z = x! + y!$, where $x, y$ are natural numbers with $x \le y$ ?

PEN P Problems, 17

Let $p$ be a prime number of the form $4k+1$. Suppose that $r$ is a quadratic residue of $p$ and that $s$ is a quadratic nonresidue of $p$. Show that $p=a^{2}+b^{2}$, where \[a=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-r)}{p}\right), b=\frac{1}{2}\sum^{p-1}_{i=1}\left( \frac{i(i^{2}-s)}{p}\right).\] Here, $\left( \frac{k}{p}\right)$ denotes the Legendre Symbol.

1989 IMO Shortlist, 15

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$

1989 IMO Longlists, 50

Let $ a, b, c, d,m, n \in \mathbb{Z}^\plus{}$ such that \[ a^2\plus{}b^2\plus{}c^2\plus{}d^2 \equal{} 1989,\] \[ a\plus{}b\plus{}c\plus{}d \equal{} m^2,\] and the largest of $ a, b, c, d$ is $ n^2.$ Determine, with proof, the values of $m$ and $ n.$

1969 IMO Longlists, 25

$(GBR 2)$ Let $a, b, x, y$ be positive integers such that $a$ and $b$ have no common divisor greater than $1$. Prove that the largest number not expressible in the form $ax + by$ is $ab - a - b$. If $N(k)$ is the largest number not expressible in the form $ax + by$ in only $k$ ways, find $N(k).$

1983 IMO Shortlist, 18

Let $a,b$ and $c$ be positive integers, no two of which have a common divisor greater than $1$. Show that $2abc-ab-bc-ca$ is the largest integer which cannot be expressed in the form $xbc+yca+zab$, where $x,y,z$ are non-negative integers.

1992 IMO Longlists, 34

Let $a, b, c$ be integers. Prove that there are integers $p_1, q_1, r_1, p_2, q_2, r_2$ such that \[a = q_1r_2 - q_2r_1, b = r_1p_2 - r_2p_1, c = p_1q_2 - p_2q_1.\]

PEN P Problems, 18

Let $p$ be a prime with $p \equiv 1 \pmod{4}$. Let $a$ be the unique integer such that \[p=a^{2}+b^{2}, \; a \equiv-1 \pmod{4}, \; b \equiv 0 \; \pmod{2}\] Prove that \[\sum^{p-1}_{i=0}\left( \frac{i^{3}+6i^{2}+i }{p}\right) = 2 \left( \frac{2}{p}\right),\] where $\left(\frac{k}{p}\right)$ denotes the Legendre Symbol.

PEN P Problems, 29

Show that the set of positive integers which cannot be represented as a sum of distinct perfect squares is finite.

1995 IMO Shortlist, 7

Does there exist an integer $ n > 1$ which satisfies the following condition? The set of positive integers can be partitioned into $ n$ nonempty subsets, such that an arbitrary sum of $ n \minus{} 1$ integers, one taken from each of any $ n \minus{} 1$ of the subsets, lies in the remaining subset.

1996 IMO Shortlist, 3

Let $ k,m,n$ be integers such that $ 1 < n \leq m \minus{} 1 \leq k.$ Determine the maximum size of a subset $ S$ of the set $ \{1,2,3, \ldots, k\minus{}1,k\}$ such that no $ n$ distinct elements of $ S$ add up to $ m.$

2000 IMO Shortlist, 6

Let $ p$ and $ q$ be relatively prime positive integers. A subset $ S$ of $ \{0, 1, 2, \ldots \}$ is called [b]ideal[/b] if $ 0 \in S$ and for each element $ n \in S,$ the integers $ n \plus{} p$ and $ n \plus{} q$ belong to $ S.$ Determine the number of ideal subsets of $ \{0, 1, 2, \ldots \}.$

2000 IMO Shortlist, 6

Show that the set of positive integers that cannot be represented as a sum of distinct perfect squares is finite.