Found problems: 15925
VII Soros Olympiad 2000 - 01, 9.4
The distance between cities $A$ and $B$ is $30$ km. A bus departed from $A$, which makes a stop every $5$ km for $2$ minutes. The bus moves between stops at a speed of $80$ km / h. Simultaneously with the departure of the bus from $A$, a cyclist leaves $B$ to meet it, traveling at a speed of $27$ km / h. How far from $A$ will the cyclist meet the bus?
1991 Czech And Slovak Olympiad IIIA, 3
For any permutation $p$ of the set $\{1,2,...,n\}$, let us denote $d(p) = |p(1)-1|+|p(2)-2|+...+|p(n)-n|$. Let $i(p)$ be the number of inversions of $p$, i.e. the number of pairs $1 \le i < j \le n$ with $p(i) > p(j)$. Prove that $d(p)\le 2i(p)$$.
2022 MMATHS, 9
Let $f$ be a monic cubic polynomial such that the sum of the coefficients of $f$ is $5$ and such that the sum of the roots of $f$ is $1$. Find the absolute value of the sum of the cubes of the roots of $f$.
2011 Vietnam National Olympiad, 1
Define the sequence of integers $\langle a_n\rangle$ as;
\[a_0=1, \quad a_1=-1, \quad \text{ and } \quad a_n=6a_{n-1}+5a_{n-2} \quad \forall n\geq 2.\]
Prove that $a_{2012}-2010$ is divisible by $2011.$
2014 China Western Mathematical Olympiad, 4
Given a positive integer $n$, let $a_1,a_2,..,a_n$ be a sequence of nonnegative integers. A sequence of one or more consecutive terms of $a_1,a_2,..,a_n$ is called $dragon$ if their aritmetic mean is larger than 1. If a sequence is a $dragon$, then its first term is the $head$ and the last term is the $tail$. Suppose $a_1,a_2,..,a_n$ is the $head$ or/and $tail$ of some $dragon$ sequence; determine the minimum value of $a_1+a_2+\cdots +a_n$ in terms of $n$.
2015 Taiwan TST Round 2, 2
Construct a tetromino by attaching two $2 \times 1$ dominoes along their longer sides such that the midpoint of the longer side of one domino is a corner of the other domino. This construction yields two kinds of tetrominoes with opposite orientations. Let us call them $S$- and $Z$-tetrominoes, respectively.
Assume that a lattice polygon $P$ can be tiled with $S$-tetrominoes. Prove that no matter how we tile $P$ using only $S$- and $Z$-tetrominoes, we always use an even number of $Z$-tetrominoes.
[i]Proposed by Tamas Fleiner and Peter Pal Pach, Hungary[/i]
Kettering MO, 2006
[b]p1.[/b] At a conference a mathematician and a chemist were talking. They were amazed to find that they graduated from the same high school. One of them, the chemist, mentioned that he had three sons and asked the other to calculate the ages of his sons given the following facts:
(a) their ages are integers,
(b) the product of their ages is $36$,
(c) the sum of their ages is equal to the number of windows in the high school of the chemist and the mathematician.
The mathematician considered this problem and noted that there was not enough information to obtain a unique solution. The chemist then noted that his oldest son had red hair. The mathematician then announced that he had determined the ages of the three sons. Please (aspiring mathematicians) determine the ages of the chemists three sons and explain your solution.
[b]p2.[/b] A square is inscribed in a triangle. Two vertices of this square are on the base of the triangle and two others are on the lateral sides. Prove that the length of the side of the square is greater than and less than $2r$, where $r$ is a radius of the circle inscribed in the triangle.
[b]p3.[/b] You are given any set of $100$ integers in which none of the integers is divisible by $100$. Prove that it is possible to select a subset of this set of $100$ integers such that their sum is a multiple of $100$.
[b]p4.[/b] Find all prime numbers $a$ and $b$ such that $a^b + b^a$ is a prime number.
[b]p5.[/b] $N$ airports are connected by airlines. Some airports are directly connected and some are not. It is always possible to travel from one airport to another by changing planes as needed. The board of directors decided to close one of the airports. Prove that it is possible to select an airport to close so that the remaining airports remain connected.
[b]p6.[/b] (A simplified version of the Fermat’s Last Theorem). Prove that there are no positive integers $x, y, z$ and $z \le n$ satisfying the following equation: $x^n + y^n = z^n$.
PS. You should use hide for answers.
2021 Francophone Mathematical Olympiad, 1
Let $R$ and $S$ be the numbers defined by
\[R = \dfrac{1}{2} \times \dfrac{3}{4} \times \dfrac{5}{6} \times \cdots \times \dfrac{223}{224} \text{ and } S = \dfrac{2}{3} \times \dfrac{4}{5} \times \dfrac{6}{7} \times \cdots \times \dfrac{224}{225}.\]Prove that $R < \dfrac{1}{15} < S$.
2022 Spain Mathematical Olympiad, 2
Let $a,b,c,d$ be four positive real numbers. If they satisfy \[a+b+\frac{1}{ab}=c+d+\frac{1}{cd}\quad\text{and}\quad\frac1a+\frac1b+ab=\frac1c+\frac1d+cd\] then prove that at least two of the values $a,b,c,d$ are equal.
Mathematical Minds 2024, P5
Let $n\geqslant 2$ be a fixed positive integer. Determine the minimum value of the expression $$\frac{a_{a_1}}{a_1}+\frac{a_{a_2}}{a_2}+\dots +\frac{a_{a_n}}{a_n},$$ where $a_1, a_2, \dots, a_n$ are positive integers at most $n$.
[i]Proposed by David Anghel[/i]
2022 IFYM, Sozopol, 4
Let $n$ be a natural number. To prove that the value of the expression
$$\prod^n_{i=0}\frac{x^{n-1}_i}{\prod_{j \ne i}(x_i - x_j)}$$
does not depend on the choice of the different real numbers $x_0, x_1, ... , x_n$.
VI Soros Olympiad 1999 - 2000 (Russia), 11.3
The numbers $a, b$ and $c$ are such that $a^2 + b^2 + c^2 = 1$. Prove that $$a^4 + b^4 + c^4 + 2(ab^2 + bc^2 + ca^2)^2\le 1. $$ At what $a, b$ and $c$ does inequality turn into equality?
Mid-Michigan MO, Grades 5-6, 2012
[b]p1.[/b] A boy has as many sisters as brothers. How ever, his sister has twice as many brothers as sisters. How many boys and girls are there in the family?
[b]p2.[/b] Solve each of the following problems.
(1) Find a pair of numbers with a sum of $11$ and a product of $24$.
(2) Find a pair of numbers with a sum of $40$ and a product of $400$.
(3) Find three consecutive numbers with a sum of $333$.
(4) Find two consecutive numbers with a product of $182$.
[b]p3.[/b] $2008$ integers are written on a piece of paper. It is known that the sum of any $100$ numbers is positive. Show that the sum of all numbers is positive.
[b]p4.[/b] Let $p$ and $q$ be prime numbers greater than $3$. Prove that $p^2 - q^2$ is divisible by $24$.
[b]p5.[/b] Four villages $A,B,C$, and $D$ are connected by trails as shown on the map.
[img]https://cdn.artofproblemsolving.com/attachments/4/9/33ecc416792dacba65930caa61adbae09b8296.png[/img]
On each path $A \to B \to C$ and $B \to C \to D$ there are $10$ hills, on the path $A \to B \to D$ there are $22$ hills, on the path $A \to D \to B$ there are $45$ hills. A group of tourists starts from $A$ and wants to reach $D$. They choose the path with the minimal number of hills. What is the best path for them?
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].
2011 USA Team Selection Test, 3
Let $p$ be a prime. We say that a sequence of integers $\{z_n\}_{n=0}^\infty$ is a [i]$p$-pod[/i] if for each $e \geq 0$, there is an $N \geq 0$ such that whenever $m \geq N$, $p^e$ divides the sum
\[\sum_{k=0}^m (-1)^k {m \choose k} z_k.\]
Prove that if both sequences $\{x_n\}_{n=0}^\infty$ and $\{y_n\}_{n=0}^\infty$ are $p$-pods, then the sequence $\{x_ny_n\}_{n=0}^\infty$ is a $p$-pod.
2016 Turkey EGMO TST, 5
A sequence $a_1, a_2, \ldots $ consisting of $1$'s and $0$'s satisfies for all $k>2016$ that
\[ a_k=0 \quad \Longleftrightarrow \quad a_{k-1}+a_{k-2}+\cdots+a_{k-2016}>23. \]
Prove that there exist positive integers $N$ and $T$ such that $a_k=a_{k+T}$ for all $k>N$.
2021 Thailand Mathematical Olympiad, 10
Let $d\geq 13$ be an integer, and let $P(x) = a_dx^d + a_{d-1}x^{d-1} + \dots + a_1x+a_0$ be a polynomial of degree $d$ with complex coefficients such that $a_n = a_{d-n}$ for all $n\in\{0,1,\dots,d\}$. Prove that if $P$ has no double roots, then $P$ has two distinct roots $z_1$ and $z_2$ such that $|z_1-z_2|<1$.
1985 IMO Longlists, 54
Set $S_n = \sum_{p=1}^n (p^5+p^7)$. Determine the greatest common divisor of $S_n$ and $S_{3n}.$
2012 USA Team Selection Test, 1
Consider (3-variable) polynomials
\[P_n(x,y,z)=(x-y)^{2n}(y-z)^{2n}+(y-z)^{2n}(z-x)^{2n}+(z-x)^{2n}(x-y)^{2n}\]
and
\[Q_n(x,y,z)=[(x-y)^{2n}+(y-z)^{2n}+(z-x)^{2n}]^{2n}.\]
Determine all positive integers $n$ such that the quotient $Q_n(x,y,z)/P_n(x,y,z)$ is a (3-variable) polynomial with rational coefficients.
2022 Saudi Arabia BMO + EGMO TST, 2.4
Find all functions $f : R \to R$ such that
$$2f(x)f(x + y) -f(x^2) =\frac{x}{2}(f(2x) + 4f(f(y)))$$
for all $x, y \in R$.
2019 Belarus Team Selection Test, 4.3
Let $a_0,a_1,a_2,\dots $ be a sequence of real numbers such that $a_0=0, a_1=1,$ and for every $n\geq 2$ there exists $1 \leq k \leq n$ satisfying \[ a_n=\frac{a_{n-1}+\dots + a_{n-k}}{k}. \]Find the maximum possible value of $a_{2018}-a_{2017}$.
1951 AMC 12/AHSME, 26
In the equation $ \frac {x(x \minus{} 1) \minus{} (m \plus{} 1)}{(x \minus{} 1)(m \minus{} 1)} \equal{} \frac {x}{m}$ the roots are equal when
$ \textbf{(A)}\ m \equal{} 1 \qquad\textbf{(B)}\ m \equal{} \frac {1}{2} \qquad\textbf{(C)}\ m \equal{} 0 \qquad\textbf{(D)}\ m \equal{} \minus{} 1 \qquad\textbf{(E)}\ m \equal{} \minus{} \frac {1}{2}$
1961 IMO, 1
Solve the system of equations: \[ x+y+z=a \] \[ x^2+y^2+z^2=b^2 \] \[ xy=z^2 \] where $a$ and $b$ are constants. Give the conditions that $a$ and $b$ must satisfy so that $x,y,z$ are distinct positive numbers.
IV Soros Olympiad 1997 - 98 (Russia), grade8
[b]p1.[/b] a) There are barrels weighing $1, 2, 3, 4, ..., 19, 20$ pounds. Is it possible to distribute them equally (by weight) into three trucks?
b) The same question for barrels weighing $1, 2, 3, 4, ..., 9, 10$ pounds.
[b]p2.[/b] There are apples and pears in the basket. If you add the same number of apples there as there are now pears (in pieces), then the percentage of apples will be twice as large as what you get if you add as many pears to the basket as there are now apples. What percentage of apples are in the basket now?
[b]p3.[/b] What is the smallest number of integers from $1000$ to $1500$ that must be marked so that any number $x$ from $1000$ to $1500$ differs from one of the marked numbers by no more than $10\% $of the value of $x$?
[b]p4.[/b] Draw a perpendicular from a given point to a given straight line, having a compass and a short ruler (the length of the ruler is significantly less than the distance from the point to the straight line; the compass reaches from the point to the straight line “with a margin”).
[b]p5.[/b] There is a triangle on the chessboard (left figure). It is allowed to roll it around the sides (in this case, the triangle is symmetrically reflected relative to the side around which it is rolled). Can he, after a few steps, take the position shown in right figure?
[img]https://cdn.artofproblemsolving.com/attachments/f/5/eeb96c92f30b837e7ed2cdf7cf77b0fbb8ceda.png[/img]
[b]p6.[/b] The natural number $a$ is less than the natural number $b$. In this case, the sum of the digits of number $a$ is $100$ less than the sum of the digits of number $b$. Prove that between the numbers $ a$ and $b$ there is a number whose sum of digits is $43$ more than the sum of the digits of $a$.
PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c2416727_soros_olympiad_in_mathematics]here.[/url]
2018 Bosnia and Herzegovina Junior BMO TST, 4
Let $a,b,c$ be real numbers which satisfy:
$$a+b+c=2$$
$$a^2+b^2+c^2=2$$
Prove that at least one of numbers $|a-b|, |b-c|, |c-a|$ is greater or equal than $1$.
2013 NIMO Summer Contest, 4
Find the sum of the real roots of the polynomial \[ \prod_{k=1}^{100} \left( x^2-11x+k \right) = \left( x^2-11x+1 \right)\left( x^2-11x+2 \right)\dots\left(x^2-11x+100\right). \][i]Proposed by Evan Chen[/i]