This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1949-56 Chisinau City MO, 18

Tags: trinomial , algebra
Prove that if the numbers $a, b, c$ are the lengths of the sides of some nondegenerate triangle, then the equation $$b^2x^2 + (b^2 + c^2 - a^2) x + c^2 = 0$$ has imaginary roots.

2024 Princeton University Math Competition, A4 / B6

Tags: algebra
Compute the number of solutions to $1+\cos(\theta)+\cos(2\theta)+\ldots+\cos(2024\theta) = \tfrac{1}{2}$ for $\theta \in [0,2\pi].$

1973 Kurschak Competition, 1

For what positive integers $n, k$ (with $k < n$) are the binomial coefficients $${n \choose k- 1} \,\,\, , \,\,\, {n \choose k} \,\,\, , \,\,\, {n \choose k + 1}$$ three successive terms of an arithmetic progression?

2010 CHMMC Fall, 10

Tags: algebra
The $100$th degree polynomial $P(x)$ satisfies $P(2^k) = k$ for $k = 0, 1, . . . 100$. Let $a$ denote the leading coefficient of $P(x)$. Find the unique integer $M$ such that $2^M < |a| < 2^{M+1}$. .

2022 Paraguay Mathematical Olympiad, 1

Tags: algebra
There are $13$ positive integers greater than $\sqrt{15}$ and less than $\sqrt[3]{B}$. What is the smallest integer value of $B$?

2011 Grand Duchy of Lithuania, 2

Let $n \ge 2$ be a natural number and suppose that positive numbers $a_0,a_1,...,a_n$ satisfy the equality $(a_{k-1}+a_{k})(a_{k}+a_{k+1})=a_{k-1}-a_{k+1}$ for each $k =1,2,...,n -1$. Prove that $a_n< \frac{1}{n-1}$

2014 France Team Selection Test, 4

Let $\mathbb{Z} _{>0}$ be the set of positive integers. Find all functions $f: \mathbb{Z} _{>0}\rightarrow \mathbb{Z} _{>0}$ such that \[ m^2 + f(n) \mid mf(m) +n \] for all positive integers $m$ and $n$.

2022 Azerbaijan National Mathematical Olympiad, 4

Find all quadruplets $(x_1, x_2, x_3, x_4)$ of real numbers such that the next six equalities apply: $$\begin{cases} x_1 + x_2 = x^2_3 + x^2_4 + 6x_3x_4\\ x_1 + x_3 = x^2_2 + x^2_4 + 6x_2x_4\\ x_1 + x_4 = x^2_2 + x^2_3 + 6x_2x_3\\ x_2 + x_3 = x^2_1 + x^2_4 + 6x_1x_4\\ x_2 + x_4 = x^2_1 + x^2_3 + 6x_1x_3 \\ x_3 + x_4 = x^2_1 + x^2_2 + 6x_1x_2 \end{cases}$$

1975 Spain Mathematical Olympiad, 7

Consider the real function defined by $f(x) =\frac{1}{|x + 3| + |x + 1| + |x - 2| + |x -5|}$ for all $x \in R$. a) Determine its maximum. b) Graphic representation.

2008 Bulgarian Autumn Math Competition, Problem 12.3

Find all continuous functions $f:\mathbb{R}\rightarrow \mathbb{R}$ such that \[(f(x)f(y)-1)f(x+y)=2f(x)f(y)-f(x)-f(y)\quad \forall x,y\in \mathbb{R}\]

2009 Postal Coaching, 5

Define a sequence $<x_n>$ by $x_1 = 1, x_2 = x, x_{n+2} = xx_{n+1} + nx_n, n \ge 1$. Consider the polynomial $P_n(x) = x_{n-1}x_{n+1} - x_n^2$, for each $n \ge 2$. Prove or disprove that the coefficients of $P_n(x)$ are all non-negative, except for the constant term when $n$ is odd.

2003 National Olympiad First Round, 24

If $3a=1+\sqrt 2$, what is the largest integer not exceeding $9a^4-6a^3+8a^2-6a+9$? $ \textbf{(A)}\ 8 \qquad\textbf{(B)}\ 9 \qquad\textbf{(C)}\ 10 \qquad\textbf{(D)}\ 12 \qquad\textbf{(E)}\ \text{None of the preceding} $

2016 Hong Kong TST, 3

Let $a,b,c$ be positive real numbers satisfying $abc=1$. Determine the smallest possible value of $$\frac{a^3+8}{a^3(b+c)}+\frac{b^3+8}{b^3(a+c)}+\frac{c^3+8}{c^3(b+a)}$$

2024 Romania National Olympiad, 4

We consider an integer $n \ge 3,$ the set $S=\{1,2,3,\ldots,n\}$ and the set $\mathcal{F}$ of the functions from $S$ to $S.$ We say that $\mathcal{G} \subset \mathcal{F}$ is a generating set for $\mathcal{H} \subset \mathcal{F}$ if any function in $\mathcal{H}$ can be represented as a composition of functions from $\mathcal{G}.$ a) Let the functions $a:S \to S,$ $a(n-1)=n,$ $a(n)=n-1$ and $a(k)=k$ for $k \in S \setminus \{n-1,n\}$ and $b:S \to S,$ $b(n)=1$ and $b(k)=k+1$ for $k \in S \setminus \{n\}.$ Prove that $\{a,b\}$ is a generating set for the set $\mathcal{B}$ of bijective functions of $\mathcal{F}.$ b) Prove that the smallest number of elements that a generating set of $\mathcal{F}$ has is $3.$

2018 APMO, 5

Find all polynomials $P(x)$ with integer coefficients such that for all real numbers $s$ and $t$, if $P(s)$ and $P(t)$ are both integers, then $P(st)$ is also an integer.

2007 Hong Kong TST, 5

Tags: algebra
[url=http://www.mathlinks.ro/Forum/viewtopic.php?t=107262]IMO 2007 HKTST 1[/url] Problem 5 The sequence $\{a_{n}\}$ is defined by $a_{1}=0$ and $(n+1)^{3}a_{n+1}=2n^{2}(2n+1)a_{n}+2(3n+1)$ for all integers $\geq 1$. Show that infintely many members of the sequence are positive integers.

PEN E Problems, 16

Prove that for any prime $p$ in the interval $\left]n, \frac{4n}{3}\right]$, $p$ divides \[\sum^{n}_{j=0}{{n}\choose{j}}^{4}.\]

1971 IMO Shortlist, 5

Let \[ E_n=(a_1-a_2)(a_1-a_3)\ldots(a_1-a_n)+(a_2-a_1)(a_2-a_3)\ldots(a_2-a_n)+\ldots+(a_n-a_1)(a_n-a_2)\ldots(a_n-a_{n-1}). \] Let $S_n$ be the proposition that $E_n\ge0$ for all real $a_i$. Prove that $S_n$ is true for $n=3$ and $5$, but for no other $n>2$.

1995 Turkey MO (2nd round), 3

Let $A$ be a real number and $(a_{n})$ be a sequence of real numbers such that $a_{1}=1$ and \[1<\frac{a_{n+1}}{a_{n}}\leq A \mbox{ for all }n\in\mathbb{N}.\] $(a)$ Show that there is a unique non-decreasing surjective function $f: \mathbb{N}\rightarrow \mathbb{N}$ such that $1<A^{k(n)}/a_{n}\leq A$ for all $n\in \mathbb{N}$. $(b)$ If $k$ takes every value at most $m$ times, show that there is a real number $C>1$ such that $Aa_{n}\geq C^{n}$ for all $n\in \mathbb{N}$.

2023 Auckland Mathematical Olympiad, 3

Each square on an $8\times 8$ checkers board contains either one or zero checkers. The number of checkers in each row is a multiple of $3$, the number of checkers in each column is a multiple of $5$. Assuming the top left corner of the board is shown below, how many checkers are used in total? [img]https://cdn.artofproblemsolving.com/attachments/0/8/e46929e7ec3fff9be4892ef954ae299e0cb8c7.png[/img]

2002 Korea - Final Round, 1

For $n \ge 3$, let $S=a_1+a_2+\cdots+a_n$ and $T=b_1b_2\cdots b_n$ for positive real numbers $a_1,a_2,\ldots,a_n, b_1,b_2 ,\ldots,b_n$, where the numbers $b_i$ are pairwise distinct. (a) Find the number of distinct real zeroes of the polynomial \[f(x)=(x-b_1)(x-b_2)\cdots(x-b_n)\sum_{j=1}^n \frac{a_j}{x-b_j}\] (b) Prove the inequality \[\frac1{n-1}\sum_{j=1}^n \left(1-\frac{a_j}{S}\right)b_j > \left(\frac{T}{S}\sum_{j=1}^{n} \frac{a_j}{b_j}\right)^{\frac1{n-1}}\]

2000 Harvard-MIT Mathematics Tournament, 6

Tags: algebra
If $a$ is a root of $x^3-x-1 = 0$, compute the value of $$a^{10 }+ 2a^8 -a^7 - 3a^6 - 3a^5 + 4a^4 + 2a^3 - 4a^4 - 6a - 17.$$

1984 Bundeswettbewerb Mathematik, 3

The sequences $a_1, a_2, a_3,...$ and $b_1, b_2, b_3,... $suffices for all positive integers $n$ of the following recursion: $a_{n+1} = a_n - b_n$ and $b_{n+1} = 2b_n$, if $a_n \ge b_n$, $a_{n+1} = 2a_n$ and $b_{n+1} = b_n - a_n$, if $a_n < b_n$. For which pairs $(a_1, b_1)$ of positive real initial terms is there an index $k$ with $a_k = 0$?

2013 Costa Rica - Final Round, 1

Determine and justify all solutions $(x,y, z)$ of the system of equations: $x^2 = y + z$ $y^2 = x + z$ $z^2 = x + y$

1981 Romania Team Selection Tests, 1.

Tags: algebra
Consider the set $M$ of all sequences of integers $s=(s_1,\ldots,s_k)$ such that $0\leqslant s_i\leqslant n,\; i=1,2,\ldots,k$ and let $M(s)=\max\{s_1,\ldots,s_k\}$. Show that \[\sum_{s\in A} M(s)=(n+1)^{k+1}-(1^k+2^k+\ldots +(n+1)^k).\] [i]Ioan Tomescu[/i]