Found problems: 91
1926 Eotvos Mathematical Competition, 1
Prove that, if $a$ and $b$ are given integers, the system of equatìons
$$x + y + 2z + 2t = a$$
$$2x - 2y + z- t = b$$
has a solution in integers $x, y,z,t$.
2021 Dutch IMO TST, 2
Find all quadruplets $(x_1, x_2, x_3, x_4)$ of real numbers such that the next six equalities apply:
$$\begin{cases} x_1 + x_2 = x^2_3 + x^2_4 + 6x_3x_4\\
x_1 + x_3 = x^2_2 + x^2_4 + 6x_2x_4\\
x_1 + x_4 = x^2_2 + x^2_3 + 6x_2x_3\\
x_2 + x_3 = x^2_1 + x^2_4 + 6x_1x_4\\
x_2 + x_4 = x^2_1 + x^2_3 + 6x_1x_3 \\
x_3 + x_4 = x^2_1 + x^2_2 + 6x_1x_2 \end{cases}$$
1993 IMO Shortlist, 3
Let $n > 1$ be an integer. In a circular arrangement of $n$ lamps $L_0, \ldots, L_{n-1},$ each of of which can either ON or OFF, we start with the situation where all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \ldots .$ If $L_{j-1}$ ($j$ is taken mod $n$) is ON then $Step_j$ changes the state of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the state of any of the other lamps. If $L_{j-1}$ is OFF then $Step_j$ does not change anything at all. Show that:
(i) There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again,
(ii) If $n$ has the form $2^k$ then all the lamps are ON after $n^2-1$ steps,
(iii) If $n$ has the form $2^k + 1$ then all lamps are ON after $n^2 - n + 1$ steps.
1992 IMO Longlists, 52
Let $n$ be an integer $> 1$. In a circular arrangement of $n$ lamps $L_0, \cdots, L_{n-1}$, each one of which can be either ON or OFF, we start with the situation that all lamps are ON, and then carry out a sequence of steps, $Step_0, Step_1, \cdots$. If $L_{j-1}$ ($j$ is taken mod n) is ON, then $Step_j$ changes the status of $L_j$ (it goes from ON to OFF or from OFF to ON) but does not change the status of any of the other lamps. If $L_{j-1}$ is OFF, then $Step_j$ does not change anything at all. Show that:
[i](a)[/i] There is a positive integer $M(n)$ such that after $M(n)$ steps all lamps are ON again.
[i](b)[/i] If $n$ has the form $2^k$, then all lamps are ON after $n^2 - 1$ steps.
[i](c) [/i]If $n$ has the form $2^k +1$, then all lamps are ON after $n^2 -n+1$ steps.
2009 Bosnia And Herzegovina - Regional Olympiad, 2
Find minimal value of $a \in \mathbb{R}$ such that system $$\sqrt{x-1}+\sqrt{y-1}+\sqrt{z-1}=a-1$$ $$\sqrt{x+1}+\sqrt{y+1}+\sqrt{z+1}=a+1$$ has solution in set of real numbers
1974 Swedish Mathematical Competition, 5
Find the smallest positive real $t$ such that
\[\left\{ \begin{array}{l}
x_1 + x_3 = 2t x_2 \\
x_2 + x_4 = 2t x_3 \\
x_3 + x_5=2t x_4 \\
\end{array} \right.
\]
has a solution $x_1$, $x_2$, $x_3$, $x_4$, $x_5$ in non-negative reals, not all zero.
2003 Swedish Mathematical Competition, 1
If $x, y, z, w$ are nonnegative real numbers satisfying \[\left\{ \begin{array}{l}y = x - 2003 \\ z = 2y - 2003 \\ w = 3z - 2003 \\
\end{array} \right.
\] find the smallest possible value of $x$ and the values of $y, z, w$ corresponding to it.
1969 German National Olympiad, 4
Solve the system of equations:
$$|\log_2(x + y)| + | \log_2(x - y)| = 3$$
$$xy = 3$$
2015 Swedish Mathematical Competition, 4
Solve the system of equations $$
\left\{\begin{array}{l}
x \log x+y \log y+z \log x=0\\ \\
\dfrac{\log x}{x}+\dfrac{\log y}{y}+\dfrac{\log z}{z}=0
\end{array} \right.
$$
2016 Hanoi Open Mathematics Competitions, 9
Let $x, y,z$ satisfy the following inequalities $\begin{cases} | x + 2y - 3z| \le 6 \\
| x - 2y + 3z| \le 6 \\
| x - 2y - 3z| \le 6 \\
| x + 2y + 3z| \le 6 \end{cases}$
Determine the greatest value of $M = |x| + |y| + |z|$.
2017 Irish Math Olympiad, 2
Solve the equations :
$$\begin{cases} a + b + c = 0 \\ a^2 + b^2 + c^2 = 1\\a^3 + b^3 +c^3 = 4abc \end{cases}$$ for $ a,b,$ and $c. $
1982 Spain Mathematical Olympiad, 1
On the puzzle page of a newspaper this problem is proposed:
“Two children, Antonio and José, have $160$ comics. Antonio counts his by $7$ by $7$ and there are $4$ left over. José counts his $ 8$ by $8$ and he also has $4$ left over. How many comics does he have each?" In the next issue of the newspaper this solution is given: “Antonio has $60$ comics and José has $100$.”
Analyze this solution and indicate what a mathematician would do with this problem.
2010 Saudi Arabia Pre-TST, 2.1
Find all triples $(x,y,z)$ of positive integers such that
$$\begin{cases} x + y +z = 2010 \\x^2 + y^2 + z^2 - xy - yz - zx =3 \end{cases}$$
1979 Dutch Mathematical Olympiad, 2
Solve in $N$:
$$\begin{cases} a^3=b^3+c^3+12a \\ a^2=5(b+c) \end{cases}$$
2017 Denmark MO - Mohr Contest, 1
A system of equations
$$\begin{cases} x^2 \,\, ? \,\, z^2 = -8 \\ y^2 \,\, ? \,\, z^2 = 7 \end{cases}$$
is written on a piece of paper, but unfortunately two of the symbols are a little blurred. However, it is known that the system has at least one solution, and that each of the two question marks stands for either $+$ or $-$. What are the two symbols?
1977 Swedish Mathematical Competition, 3
Show that the only integral solution to
\[\left\{ \begin{array}{l}
xy + yz + zx = 3n^2 - 1\\
x + y + z = 3n \\
\end{array} \right.
\]
with $x \geq y \geq z$ is $x=n+1$, $y=n$, $z=n-1$.
2004 Denmark MO - Mohr Contest, 4
Find all sets $x,y,z$ of real numbers that satisfy
$$\begin{cases} x^3 - y^2 = z^2 - x \\ y^3 -z^2 =x^2 -y \\z^3 -x^2 = y^2 -z \end{cases}$$
2021 Dutch BxMO TST, 2
Find all triplets $(x, y, z)$ of real numbers for which
$$\begin{cases}x^2- yz = |y-z| +1 \\ y^2 - zx = |z-x| +1 \\ z^2 -xy = |x-y| + 1 \end{cases}$$
2005 Denmark MO - Mohr Contest, 2
Determine, for any positive real number $a$, the number of solutions $(x,y)$ to the system of equations
$$\begin{cases} |x|+|y|= 1 \\ x^2 + y^2 = a \end{cases}$$
where $x$ and $y$ are real numbers.
2021 Dutch IMO TST, 2
Find all quadruplets $(x_1, x_2, x_3, x_4)$ of real numbers such that the next six equalities apply:
$$\begin{cases} x_1 + x_2 = x^2_3 + x^2_4 + 6x_3x_4\\
x_1 + x_3 = x^2_2 + x^2_4 + 6x_2x_4\\
x_1 + x_4 = x^2_2 + x^2_3 + 6x_2x_3\\
x_2 + x_3 = x^2_1 + x^2_4 + 6x_1x_4\\
x_2 + x_4 = x^2_1 + x^2_3 + 6x_1x_3 \\
x_3 + x_4 = x^2_1 + x^2_2 + 6x_1x_2 \end{cases}$$
2010 Saudi Arabia Pre-TST, 4.1
Find all triples $(a, b, c)$ of positive integers for which $$\begin{cases} a + bc=2010 \\ b + ca = 250\end{cases}$$
2004 Cuba MO, 1
Determine all real solutions to the system of equations:
$$x_1 + x_2 +...+ x_{2004 }= 2004$$
$$x^4_1+ x^4_2+ ... + x^4_{2004} = x^3_1+x^3_2+... + x^3_{2004}$$
2016 Junior Balkan Team Selection Tests - Moldova, 5
Real numbers $a$ and $b$ satisfy the system of equations $$\begin{cases} a^3-a^2+a-5=0 \\ b^3-2b^2+2b+4=0 \end{cases}$$ Find the numerical value of the sum $a+ b$.
2003 Junior Balkan Team Selection Tests - Moldova, 6
The real numbers x and у satisfy the equations
$$\begin{cases} \sqrt{3x}\left(1+\dfrac{1}{x+y}\right)=2 \\ \\ \sqrt{7y}\left(1-\dfrac{1}{x+y}\right)=4\sqrt2 \end{cases}$$
Find the numerical value of the ratio $y/x$.
1980 Czech And Slovak Olympiad IIIA, 5
Solve a set of inequalities in the domain of integer numbers:
$$3x^2 +2yz \le 1+y^2$$
$$3y^2 +2zx \le 1+z^2$$
$$3z^2 +2xy \le 1+x^2$$