This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2010 Contests, 3

Let $P(x)$ be a polynomial with integer coefficients and roots $1997$ and $2010$. Suppose further that $|P(2005)|<10$. Determine what integer values $P(2005)$ can get.

2011 Czech and Slovak Olympiad III A, 4

Consider a quadratic polynomial $ax^2+bx+c$ with real coefficients satisfying $a\ge 2$, $b\ge 2$, $c\ge 2$. Adam and Boris play the following game. They alternately take turns with Adam first. On Adam’s turn, he can choose one of the polynomial’s coefficients and replace it with the sum of the other two coefficients. On Boris’s turn, he can choose one of the polynomial’s coefficients and replace it with the product of the other two coefficients. The winner is the player who first produces a polynomial with two distinct real roots. Depending on the values of $a$, $b$ and $c$, determine who has a winning strategy.

1949-56 Chisinau City MO, 13

Tags: factoring , algebra
Factor the polynomial $(a+b+c)^3- a^3 -b^3 -c^3$

2009 Kazakhstan National Olympiad, 6

Let $P(x)$ be polynomial with integer coefficients. Prove, that if for any natural $k$ holds equality: $ \underbrace{P(P(...P(0)...))}_{n -times}=0$ then $P(0)=0$ or $P(P(0))=0$

2012 Online Math Open Problems, 30

Let $P(x)$ denote the polynomial \[3\sum_{k=0}^{9}x^k + 2\sum_{k=10}^{1209}x^k + \sum_{k=1210}^{146409}x^k.\]Find the smallest positive integer $n$ for which there exist polynomials $f,g$ with integer coefficients satisfying $x^n - 1 = (x^{16} + 1)P(x) f(x) + 11\cdot g(x)$. [i]Victor Wang.[/i]

2018 India Regional Mathematical Olympiad, 2

Tags: algebra
Let $n$ be a natural number. Find all real numbers $x$ satisfying the equation $$\sum^n_{k=1}\frac{kx^k}{1+x^{2k}}=\frac{n(n+1)}4.$$

2011 Mathcenter Contest + Longlist, 10

Let $p,q,r\in R $ with $pqr=1$. Prove that $$\left(\frac{1}{1-p}\right)^2+\left(\frac{1}{1-q}\right)^2+\left(\frac{1}{1-r}\right)^2\ge 1$$ [i](Real Matrik)[/i]

2007 Hanoi Open Mathematics Competitions, 10

What is the smallest possible value of $x^2+2y^2-x-2y-xy$?

2017 China Second Round Olympiad, 2

Let $ x,y$ are real numbers such that $x^2+2cosy=1$. Find the ranges of $x-cosy$.

2022 VN Math Olympiad For High School Students, Problem 7

Given [i]Fibonacci[/i] sequence $(F_n),$ and a positive integer $m$, denote $k(m)$ by the smallest positive integer satisfying $F_{n+k(m)}\equiv F_n(\bmod m),$ for all natural numbers $n$, $s$ is a positive integer. Prove that: a) ${F_{{{3.2}^{s - 1}}}} \equiv 0(\bmod {2^s})$ and ${F_{{{3.2}^{s - 1}} + 1}} \equiv 1(\bmod {2^s}).$ b) $k({2^s}) = {3.2^{s - 1}}.$

2021 Middle European Mathematical Olympiad, 2

Given a positive integer $n$, we say that a polynomial $P$ with real coefficients is $n$-pretty if the equation $P(\lfloor x \rfloor)=\lfloor P(x) \rfloor$ has exactly $n$ real solutions. Show that for each positive integer $n$ [list=a] [*] there exists an n-pretty polynomial; [*] any $n$-pretty polynomial has a degree of at least $\tfrac{2n+1}{3}$. [/list] ([i]Remark.[/i] For a real number $x$, we denote by $\lfloor x \rfloor$ the largest integer smaller than or equal to $x$.)

2001 Greece JBMO TST, 3

$4$ men stand at the entrance of a dark tunnel. Man $A$ needs $10$ minutes to pass through the tunnel, man $B$ needs $5$ minutes, man $C$ needs $2$ minutes and man $D$ needs $1$ minute. There is only one torch, that may be used from anyone that passes through the tunnel. Additionaly, at most $2$ men can pass through at the same time using the existing torch. Determine the smallest possible time the four men need to reach the exit of the tunnel.

2010 Stanford Mathematics Tournament, 4

Compute $\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1+\sqrt{1}}}}...}$

2023 USA TSTST, 5

Suppose $a,\,b,$ and $c$ are three complex numbers with product $1$. Assume that none of $a,\,b,$ and $c$ are real or have absolute value $1$. Define \begin{tabular}{c c c} $p=(a+b+c)+\left(\dfrac 1a+\dfrac 1b+\dfrac 1c\right)$ & \text{and} & $q=\dfrac ab+\dfrac bc+\dfrac ca$. \end{tabular} Given that both $p$ and $q$ are real numbers, find all possible values of the ordered pair $(p,q)$. [i]David Altizio[/i]

1988 IMO Longlists, 76

A positive integer is called a [b]double number[/b] if its decimal representation consists of a block of digits, not commencing with 0, followed immediately by an identical block. So, for instance, 360360 is a double number, but 36036 is not. Show that there are infinitely many double numbers which are perfect squares.

2023 Iran Team Selection Test, 3

Find all function $ f: \mathbb{R}^{+} \to \mathbb{R}^{+}$ such that for every three real positive number $x,y,z$ : $$ x+f(y) , f(f(y)) + z , f(f(z))+f(x) $$ are length of three sides of a triangle and for every postive number $p$ , there is a triangle with these sides and perimeter $p$. [i]Proposed by Amirhossein Zolfaghari [/i]

2013 Canada National Olympiad, 1

Determine all polynomials $P(x)$ with real coefficients such that \[(x+1)P(x-1)-(x-1)P(x)\] is a constant polynomial.

1994 Vietnam Team Selection Test, 2

Determine all functions $f: \mathbb{R} \mapsto \mathbb{R}$ satisfying \[f\left(\sqrt{2} \cdot x\right) + f\left(4 + 3 \cdot \sqrt{2} \cdot x \right) = 2 \cdot f\left(\left(2 + \sqrt{2}\right) \cdot x\right)\] for all $x$.

2013 IFYM, Sozopol, 6

For which values of the real parameter $r$ the equation $r^2 x^2+2rx+4=28r^2$ has two distinct integer roots?

2000 Iran MO (3rd Round), 3

Prove that for every natural number $ n$ there exists a polynomial $ p(x)$ with integer coefficients such that$ p(1),p(2),...,p(n)$ are distinct powers of $ 2$ .

1991 Arnold's Trivium, 64

Tags: function , domain , algebra
Does the Cauchy problem $u|_{y=x^2}=1$, $(\nabla u)^2=1$ have a smooth solution in the domain $y\ge x^2$? In the domain $y\le x^2$?

Mid-Michigan MO, Grades 10-12, 2023

[b]p1.[/b] There are $16$ students in a class. Each month the teacher divides the class into two groups. What is the minimum number of months that must pass for any two students to be in different groups in at least one of the months? [b]p2.[/b] Find all functions $f(x)$ defined for all real $x$ that satisfy the equation $2f(x) + f(1 - x) = x^2$. [b]p3.[/b] Arrange the digits from $1$ to $9$ in a row (each digit only once) so that every two consecutive digits form a two-digit number that is divisible by $7$ or $13$. [b]p4.[/b] Prove that $\cos 1^o$ is irrational. [b]p5.[/b] Consider $2n$ distinct positive Integers $a_1,a_2,...,a_{2n}$ not exceeding $n^2$ ($n>2$). Prove that some three of the differences $a_i- a_j$ are equal . PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2006 Hanoi Open Mathematics Competitions, 8

Find all polynomials P(x) such that P(x)+P(1/x)=x+1/x

2003 Baltic Way, 2

Prove that any real solution of $x^3+px+q=0$, where $p,q$ are real numbers, satisfies the inequality $4qx\le p^2$.

2011 District Olympiad, 4

Find all positive integers $m$ such that $$\{\sqrt{m}\} = \{\sqrt{m+ 2011}\}.$$