This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2006 Petru Moroșan-Trident, 2

Solve in the positive real numbers the following system. $$ \left\{\begin{matrix} x^y=2^3\\y^z=3^4\\z^x=2^4 \end{matrix}\right. $$ [i]Aurel Ene[/i]

2020-21 KVS IOQM India, 20

Tags: algebra
Two people $A$ and $B$ start from the same place at the same time to travel around a circular track of length $100$ m in opposite directions. First $B$ goes more slowly than $A$ until they meet then by doubling his rate he next meets $A$ at the starting point. Let $d$ m be the distance travelled by $B$ before he met $A$ for the first time after leaving the starting point. Find the integer closest to $d$.

BIMO 2022, 4

Tags: algebra
Given a positive integer $n$, suppose that $P(x,y)$ is a real polynomial such that \[P(x,y)=\frac{1}{1+x+y} \hspace{0.5cm} \text{for all $x,y\in\{0,1,2,\dots,n\}$} \] What is the minimum degree of $P$? [i]Proposed by Loke Zhi Kin[/i]

1975 IMO Shortlist, 9

Let $f(x)$ be a continuous function defined on the closed interval $0 \leq x \leq 1$. Let $G(f)$ denote the graph of $f(x): G(f) = \{(x, y) \in \mathbb R^2 | 0 \leq$$ x \leq 1, y = f(x) \}$. Let $G_a(f)$ denote the graph of the translated function $f(x - a)$ (translated over a distance $a$), defined by $G_a(f) = \{(x, y) \in \mathbb R^2 | a \leq x \leq a + 1, y = f(x - a) \}$. Is it possible to find for every $a, \ 0 < a < 1$, a continuous function $f(x)$, defined on $0 \leq x \leq 1$, such that $f(0) = f(1) = 0$ and $G(f)$ and $G_a(f)$ are disjoint point sets ?

2023 LMT Spring, 2

Tags: algebra
Evaluate $2023^2 -2022^2 +2021^2 -2020^2$.

2024 Brazil Team Selection Test, 3

Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$

2010 AMC 12/AHSME, 15

A coin is altered so that the probability that it lands on heads is less than $ \frac {1}{2}$ and when the coin is flipped four times, the probability of an equal number of heads and tails is $ \frac {1}{6}$. What is the probability that the coin lands on heads? $ \textbf{(A)}\ \frac {\sqrt {15} \minus{} 3}{6}\qquad \textbf{(B)}\ \frac {6 \minus{} \sqrt {6\sqrt {6} \plus{} 2}}{12}\qquad \textbf{(C)}\ \frac {\sqrt {2} \minus{} 1}{2}\qquad \textbf{(D)}\ \frac {3 \minus{} \sqrt {3}}{6}\qquad \textbf{(E)}\ \frac {\sqrt {3} \minus{} 1}{2}$

1993 Swedish Mathematical Competition, 4

Tags: equation , algebra
To each pair of nonzero real numbers $a$ and $b$ a real number $a*b$ is assigned so that $a*(b*c) = (a*b)c$ and $a*a = 1$ for all $a,b,c$. Solve the equation $x*36 = 216$.

2019 Turkey Team SeIection Test, 5

$P(x)$ is a nonconstant polynomial with real coefficients and its all roots are real numbers. If there exist a $Q(x)$ polynomial with real coefficients that holds the equality for all $x$ real numbers $(P(x))^{2}=P(Q(x))$, then prove that all the roots of $P(x)$ are same.

2010 Saudi Arabia BMO TST, 3

Find all functions $f : R \to R$ such that $$xf(x+xy)= xf(x)+ f(x^2)f(y)$$ for all $x,y \in R$.

2017 Kosovo National Mathematical Olympiad, 2

Solve the system of equations $x+y+z=\pi$ $\tan x\tan z=2$ $\tan y\tan z=18$

1969 IMO Longlists, 42

$(MON 3)$ Let $A_k (1 \le k \le h)$ be $n-$element sets such that each two of them have a nonempty intersection. Let $A$ be the union of all the sets $A_k,$ and let $B$ be a subset of $A$ such that for each $k (1\le k \le h)$ the intersection of $A_k$ and $B$ consists of exactly two different elements $a_k$ and $b_k$. Find all subsets $X$ of the set $A$ with $r$ elements satisfying the condition that for at least one index $k,$ both elements $a_k$ and $b_k$ belong to $X$.

2011 Math Hour Olympiad, 8-10

[u]Round 1 [/u] [b]p1. [/b]Twelve people, some are knights and some are knaves, are sitting around a table. Knaves always lie and knights always tell the truth. At some point they start up a conversation. The first person says, “There are no knights around this table.” The second says, “There is at most one knight at this table.” The third – “There are at most two knights at the table.” And so on until the 12th says, “There are at most eleven knights at the table.” How many knights are at the table? Justify your answer. [b]p2.[/b] Show that in the sequence $10017$, $100117$, $1001117$, $...$ all numbers are divisible by $53$. [b]p3.[/b] Harry and Draco have three wands: a bamboo wand, a willow wand, and a cherry wand, all of the same length. They must perform a spell wherein they take turns picking a wand and breaking it into three parts – first Harry, then Draco, then Harry again. But in order for the spell to work, Harry has to make sure it is possible to form three triangles out of the pieces of the wands, where each triangle has a piece from each wand. How should he break the wands to ensure the success of the spell? [b]p4.[/b] A $2\times 2\times 2$ cube has $4$ equal squares on each face. The squares that share a side are called neighbors (thus, each square has $4$ neighbors – see picture). Is it possible to write an integer in each square in such a way that the sum of each number with its $4$ neighbors is equal to $13$? If yes, show how. If no, explain why not. [img]https://cdn.artofproblemsolving.com/attachments/8/4/0f7457f40be40398dee806d125ba26780f9d3a.png[/img] [b]p5.[/b] Two girls are playing a game. The first player writes the letters $A$ or $B$ in a row, left to right, adding one letter on her turn. The second player switches any two letters after each move by the first player (the letters do not have to be adjacent), or does nothing, which also counts as a move. The game is over when each player has made $2011$ moves. Can the second player plan her moves so that the resulting letters form a palindrome? (A palindrome is a sequence that reads the same forward and backwards, e.g. $AABABAA$.) [u]Round 2 [/u] [b]p6.[/b] A red square is placed on a table. $2010$ white squares, each the same size as the red square, are then placed on the table in such a way that the red square is fully covered and the sides of every white square are parallel to the sides of the red square. Is it always possible to remove one of the white squares so the red square remains completely covered? [b]p7.[/b] A computer starts with a given positive integer to which it randomly adds either $54$ or $77$ every second and prints the resulting sum after each addition. For example, if the computer is given the number $1$, then a possible output could be: $1$, $55$, $109$, $186$, $…$ Show that after finitely many seconds the computer will print a number whose last two digits are the same. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2022 LMT Fall, 3 Ephram

Ephram Chun is a senior and math captain at Lexington High School. He is well-loved by the freshmen, who seem to only listen to him. Other than being the father figure that the freshmen never had, Ephramis also part of the Science Bowl and Science Olympiad teams along with being part of the highest orchestra LHS has to offer. His many hobbies include playing soccer, volleyball, and the many forms of chess. We hope that he likes the questions that we’ve dedicated to him! [b]p1.[/b] Ephram is scared of freshmen boys. How many ways can Ephram and $4$ distinguishable freshmen boys sit together in a row of $5$ chairs if Ephram does not want to sit between $2$ freshmen boys? [b]p2.[/b] Ephram, who is a chess enthusiast, is trading chess pieces on the black market. Pawns are worth $\$100$, knights are worth $\$515$, and bishops are worth $\$396$. Thirty-four minutes ago, Ephrammade a fair trade: $5$ knights, $3$ bishops, and $9$ rooks for $8$ pawns, $2$ rooks, and $11$ bishops. Find the value of a rook, in dollars. [b]p3.[/b] Ephramis kicking a volleyball. The height of Ephram’s kick, in feet, is determined by $$h(t) = - \frac{p}{12}t^2 +\frac{p}{3}t ,$$ where $p$ is his kicking power and $t$ is the time in seconds. In order to reach the height of $8$ feet between $1$ and $2$ seconds, Ephram’s kicking power must be between reals $a$ and $b$. Find is $100a +b$. [b]p4.[/b] Disclaimer: No freshmen were harmed in the writing of this problem. Ephram has superhuman hearing: He can hear sounds up to $8$ miles away. Ephramstands in the middle of a $8$ mile by $24$ mile rectangular grass field. A freshman falls from the sky above a point chosen uniformly and randomly on the grass field. The probability Ephram hears the freshman bounce off the ground is $P\%$. Find $P$ rounded to the nearest integer. [img]https://cdn.artofproblemsolving.com/attachments/4/4/29f7a5a709523cd563f48176483536a2ae6562.png[/img] [b]p5.[/b] Ephram and Brandon are playing a version of chess, sitting on opposite sides of a $6\times 6$ board. Ephram has $6$ white pawns on the row closest to himself, and Brandon has $6$ black pawns on the row closest to himself. During each player’s turn, their only legal move is to move one pawn one square forward towards the opposing player. Pawns cannot move onto a space occupied by another pawn. Players alternate turns, and Ephram goes first (of course). Players take turns until there are no more legal moves for the active player, at which point the game ends. Find the number of possible positions the game can end in. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

Maryland University HSMC part II, 2016

[b]p1.[/b] Fill in each box with an integer from $1$ to $9$. Each number in the right column is the product of the numbers in its row, and each number in the bottom row is the product of the numbers in its column. Some numbers may be used more than once, and not every number from $1$ to $9$ is required to be used. [img]https://cdn.artofproblemsolving.com/attachments/c/0/0212181d87f89aac374f75f1f0bde6d0600037.png[/img] [b]p2.[/b] A set $X$ is called [b]prime-difference free [/b] (henceforth pdf) if for all $x, y \in X$, $|x - y|$ is not prime. Find the number n such that the following both hold. $\bullet$ There is a pdf set of size $n$ that is a subset of $\{1,..., 2016\}$, and $\bullet$ There is no pdf set of size $n + 1$ that is a subset of $\{1,..., 2016\}$. [b]p3.[/b] Let $X_1,...,X_{15}$ be a sequence of points in the $xy$-plane such that $X_1 = (10, 0)$ and $X_{15} = (0, 10)$. Prove that for some $i \in \{1, 2,..., 14\}$, the midpoint of $X_iX_{i+1}$ is of distance greater than $1/2$ from the origin. [b]p4.[/b] Suppose that $s_1, s_2,..., s_{84}$ is a sequence of letters from the set $\{A,B,C\}$ such that every four-letter sequence from $\{A,B,C\}$ occurs exactly once as a consecutive subsequence $s_k$, $s_{k+1}$, $s_{k+2}$, $s_{k+3}$. Suppose that $$(s_1, s_2, s_3, s_4, s_5) = (A,B,B,C,A).$$ What is $s_{84}$? Prove your answer. [b]p5.[/b] Determine (with proof) whether or not there exists a sequence of positive real numbers $a_1, a_2, a_3,...$ with both of the following properties: $\bullet$ $\sum^n_{i=1} a_i \le n^2$, for all $n \ge 1$, and $\bullet$ $\sum^n_{i=1} \frac{1}{a_i} \le 2016$, for all $n \ge 1$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1998 Baltic Way, 10

Tags: algebra
Let $n\ge 4$ be an even integer. A regular $n$-gon and a regular $(n-1)$-gon are inscribed into the unit circle. For each vertex of the $n$-gon consider the distance from this vertex to the nearest vertex of the $(n-1)$-gon, measured along the circumference. Let $S$ be the sum of these $n$ distances. Prove that $S$ depends only on $n$, and not on the relative position of the two polygons.

2009 Dutch IMO TST, 4

Find all functions $f : Z \to Z$ satisfying $f(m + n) + f(mn -1) = f(m)f(n) + 2$ for all $m, n \in Z$.

2023-IMOC, A4

Tags: algebra
Find all functions $f:\mathbb{R^{+}} \rightarrow \mathbb{R^{+}}$, such that $$xf(1+xf(y))=f(f(x)+f(y))$$ for all positive reals $x, y$.

2007 Czech and Slovak Olympiad III A, 3

Consider a function $f:\mathbb N\rightarrow \mathbb N$ such that for any two positive integers $x,y$, the equation $f(xf(y))=yf(x)$ holds. Find the smallest possible value of $f(2007)$.

1984 IMO Longlists, 22

In a permutation $(x_1, x_2, \dots , x_n)$ of the set $1, 2, \dots , n$ we call a pair $(x_i, x_j )$ discordant if $i < j$ and $x_i > x_j$. Let $d(n, k)$ be the number of such permutations with exactly $k$ discordant pairs. Find $d(n, 2)$ and $d(n, 3).$

2024 Lusophon Mathematical Olympiad, 1

Determine all geometric progressions such that the product of the three first terms is $64$ and the sum of them is $14$.

2007 Princeton University Math Competition, 8

How many pairs of $2007$-digit numbers $\underline{a_1a_2}\cdots\underline{a_{2007}}$ and $\underline{b_1b_2}\cdots\underline{b_{2007}}$ are there such that $a_1b_1+a_2b_2+\cdots+a_{2007}b_{2007}$ is even? Express your answer as $a \** b^c + d \** e^f$ for integers $a$, $b$, $c$, $d$, $e$, and $f$ with $a \nmid b$ and $d \nmid e$.

2025 Romanian Master of Mathematics, 3

Tags: algebra
Fix an integer $n \geq 3$. Determine the smallest positive integer $k$ satisfying the following condition: For any tree $T$ with vertices $v_1, v_2, \dots, v_n$ and any pairwise distinct complex numbers $z_1, z_2, \dots, z_n$, there is a polynomial $P(X, Y)$ with complex coefficients of total degree at most $k$ such that for all $i \neq j$ satisfying $1 \leq i, j \leq n$, we have $P(z_i, z_j) = 0$ if and only if there is an edge in $T$ joining $v_i$ to $v_j$. Note, for example, that the total degree of the polynomial $$ 9X^3Y^4 + XY^5 + X^6 - 2 $$ is 7 because $7 = 3 + 4$. [i]Proposed by Andrei Chiriță, Romania[/i]

2007 Gheorghe Vranceanu, 2

Let be a natural number $ n\ge 2 $ and an imaginary number $ z $ having the property that $ |z-1|=|z+1|\cdot\sqrt[n]{2} . $ Denote with $ A,B,C $ the points in the Euclidean plane whose representation in the complex plane are the affixes of $ z,\frac{1-\sqrt[n]{2}}{1+\sqrt[n]{2}} ,\frac{1+\sqrt[n]{2}}{1-\sqrt[n]{2}} , $ respectively. Prove that $ AB $ is perpendicular to $ AC. $

2021 Saudi Arabia Training Tests, 35

Let $P (x)$ be a non constant integer polynomial and positive integer $n$. The sequence $a_0, a_1, ...$ is defined by $a_0 = n$ and $a_k = P (a_{k-1})$ for $k \ge 1$. Given that for each positive integer $b$, the sequence contains a $b$-th power of some positive integer greater than $1$. Prove that deg $P = 1$