This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

1970 Spain Mathematical Olympiad, 4

Knowing that the polynomials $$2x^5 - 13x^4 + 4x^3 + 61x^2 + 20x-25$$ $$x^5 -4x^4 - 13x^3 + 28x^2 + 85x+50$$ have two common double roots, determine all their roots.

1993 All-Russian Olympiad, 3

Tags: quadratic , algebra
Quadratic trinomial $f(x)$ is allowed to be replaced by one of the trinomials $x^2f(1+\frac{1}{x})$ or $(x-1)^2f(\frac{1}{x-1})$. With the use of these operations, is it possible to go from $x^2+4x+3$ to $x^2+10x+9$?

2015 BMT Spring, 5

Let $x$ and $y$ be real numbers satisfying the equation $x^2-4x+y^2+3=0$. If the maximum and minimum values of $x^2+y^2$ are $M$ and $m$ respectively, compute the numerical value of $M-m$.

2015 BMT Spring, 6

The roots of the equation $x^5-180x^4+Ax^3+Bx^2+Cx+D=0$ are in geometric progression. The sum of their reciprocals is $20$. Compute $|D|$.

2020 Estonia Team Selection Test, 3

With expressions containing the symbol $*$, the following transformations can be performed: 1) rewrite the expression in the form $x * (y * z) as ((1 * x) * y) * z$; 2) rewrite the expression in the form $x * 1$ as $x$. Conversions can only be performed with an integer expression, but not with its parts. For example, $(1 *1) * (1 *1)$ can be rewritten according to the first rule as $((1 * (1 * 1)) * 1) * 1$ (taking $x = 1 * 1$, $y = 1$ and $z = 1$), but not as $1 * (1 * 1)$ or $(1* 1) * 1$ (in the last two cases, the second rule would be applied separately to the left or right side $1 * 1$). Find all positive integers $n$ for which the expression $\underbrace{1 * (1 * (1 * (...* (1 * 1)...))}_{n units}$ it is possible to lead to a form in which there is not a single asterisk. Note. The expressions $(x * y) * $z and $x * (y * z)$ are considered different, also, in the general case, the expressions $x * y$ and $y * x$ are different.

2016 Austria Beginners' Competition, 2

Prove that all real numbers $x \ne -1$, $y \ne -1$ with $xy = 1$ satisfy the following inequality: $$\left(\frac{2+x}{1+x}\right)^2 + \left(\frac{2+y}{1+y}\right)^2 \ge \frac92$$ (Karl Czakler)

2011 Romanian Master of Mathematics, 2

Determine all positive integers $n$ for which there exists a polynomial $f(x)$ with real coefficients, with the following properties: (1) for each integer $k$, the number $f(k)$ is an integer if and only if $k$ is not divisible by $n$; (2) the degree of $f$ is less than $n$. [i](Hungary) Géza Kós[/i]

2013 HMNT, 2

Tags: algebra
You are standing at a pole and a snail is moving directly away from the pole at $1$ cm/s. When the snail is $1$ meter away, you start "Round 1". In Round $n$ ($n\ge 1$), you move directly toward the snail at $n+1$ cm/s. When you reach the snail, you immediately turn around and move back to the starting pole at $n + 1$ cm/s. When you reach the pole, you immediately turn around and Round $n + 1$ begins. At the start of Round $100$, how many meters away is the snail?

2021 JHMT HS, 4

Tags: general , algebra
Let $a_1,a_2,a_3,\dots$ be a sequence of numbers such that $a_{n+2} = 2a_n$ for all integers $n.$ Suppose $a_1 = 1,$ $a_2 = 3,$ \[ \sum_{n=1}^{2021} a_{2n} = c, \quad \text{and} \quad \sum\limits_{n=1}^{2021} a_{2n-1} = b. \] Then $c - b + \tfrac{c-b}{b}$ can be written in the form $x^y,$ where $x$ and $y$ are integers such that $x$ is as small as possible. Find $x + y.$

2016 China National Olympiad, 3

Let $p$ be an odd prime and $a_1, a_2,...,a_p$ be integers. Prove that the following two conditions are equivalent: 1) There exists a polynomial $P(x)$ with degree $\leq \frac{p-1}{2}$ such that $P(i) \equiv a_i \pmod p$ for all $1 \leq i \leq p$ 2) For any natural $d \leq \frac{p-1}{2}$, $$ \sum_{i=1}^p (a_{i+d} - a_i )^2 \equiv 0 \pmod p$$ where indices are taken $\pmod p$

2021 JHMT HS, 10

Tags: algebra
A sequence of real numbers $a_1, a_2, a_3, \dots$ satisfies $0 \leq a_1 \leq 1$ and $a_{n+1} = \tfrac{1 + \sqrt{a_n}}{2}$ for all positive integers $n$. If $a_1 + a_{2021} = 1$, then the product $a_1a_2a_3\cdots a_{2020}$ can be written in the form $m^k$, where $k$ is an integer and $m$ is a positive integer that is not divisible by any perfect square greater than $1$. Compute $m + k$.

2015 Switzerland - Final Round, 10

Find the largest natural number $n$ such that for all real numbers $a, b, c, d$ the following holds: $$(n + 2)\sqrt{a^2 + b^2} + (n + 1)\sqrt{a^2 + c^2} + (n + 1)\sqrt{a^2 + d^2} \ge n(a + b + c + d)$$

2022 Stars of Mathematics, 2

Tags: algebra
Given are real numbers $a_1, a_2, \ldots, a_n$ ($n>3$), such that $a_k^3=a_{k+1}^2+a_{k+2}^2+a_{k+3}^2$ for all $k=1,2,...,n$. Prove that all numbers are equal.

1993 Baltic Way, 8

Tags: algebra
Compute the sum of all positive integers whose digits form either a strictly increasing or strictly decreasing sequence.

1986 Swedish Mathematical Competition, 1

Show that the polynomial $x^6 -x^5 +x^4 -x^3 +x^2 -x+\frac34$ has no real zeroes.

2024 Auckland Mathematical Olympiad, 11

It is known that for quadratic polynomials $P(x)=x^2+ax+b$ and $Q(x)=x^2+cx+d$ the equation $P(Q(x))=Q(P(x))$ does not have real roots. Prove that $b \neq d$.

2010 Baltic Way, 1

Find all quadruples of real numbers $(a,b,c,d)$ satisfying the system of equations \[\begin{cases}(b+c+d)^{2010}=3a\\ (a+c+d)^{2010}=3b\\ (a+b+d)^{2010}=3c\\ (a+b+c)^{2010}=3d\end{cases}\]

1985 IMO Longlists, 96

Tags: limit , function , algebra
Determine all functions $f : \mathbb R \to \mathbb R$ satisfying the following two conditions: (a) $f(x + y) + f(x - y) = 2f(x)f(y)$ for all $x, y \in \mathbb R$, and (b) $\lim_{x\to \infty} f(x) = 0$.

2010 CHMMC Fall, 7

Tags: algebra
Art and Kimberly build flagpoles on a level ground with respective heights $10$ m and $15$ m, separated by a distance of $5$ m. Kimberly wants to move her flagpole closer to Art’s, but she can only doing so in the following manner: 1. Run a straight wire from the top of her flagpole to the bottom of Art’s. 2. Run a straight wire from the top of Art’s flagpole to the bottom of hers. 3. Build the flagpole to the point where the wires meet. If Kimberly keeps moving her flagpole in this way, compute the number of flagpoles she will build whose heights are $1$ m or greater (not counting her original $15$ m flagpole).

1999 Abels Math Contest (Norwegian MO), 4

For every nonempty subset $R$ of $S = \{1,2,...,10\}$, we define the alternating sum $A(R)$ as follows: If $r_1,r_2,...,r_k$ are the elements of $R$ in the increasing order, then $A(R) = r_k -r_{k-1} +r_{k-2}- ... +(-1)^{k-1}r_1$. (a) Is it possible to partition $S$ into two sets having the same alternating sum? (b) Determine the sum $\sum_{R} A(R)$, where $R$ runs over all nonempty subsets of $S$.

2006 China Team Selection Test, 2

The function $f(n)$ satisfies $f(0)=0$, $f(n)=n-f \left( f(n-1) \right)$, $n=1,2,3 \cdots$. Find all polynomials $g(x)$ with real coefficient such that \[ f(n)= [ g(n) ], \qquad n=0,1,2 \cdots \] Where $[ g(n) ]$ denote the greatest integer that does not exceed $g(n)$.

Kvant 2021, M2671

Let $x_1$ and $x_2$ be the roots of the equation $x^2-px+1=0$ where $p>2$ is a prime number. Prove that $x_1^p+x_2^p$ is an integer divisible by $p^2$. [i]From the folklore[/i]

2024 Indonesia TST, 3

Let $n$ be a positive integer and let $a_1, a_2, \ldots, a_n$ be positive reals. Show that $$\sum_{i=1}^{n} \frac{1}{2^i}(\frac{2}{1+a_i})^{2^i} \geq \frac{2}{1+a_1a_2\ldots a_n}-\frac{1}{2^n}.$$

2022 Thailand Online MO, 10

Let $\mathbb{Q}$ be the set of rational numbers. Determine all functions $f : \mathbb{Q}\to\mathbb{Q}$ satisfying both of the following conditions. [list=disc] [*] $f(a)$ is not an integer for some rational number $a$. [*] For any rational numbers $x$ and $y$, both $f(x + y) - f(x) - f(y)$ and $f(xy) - f(x)f(y)$ are integers. [/list]

2010 Indonesia TST, 2

Find all functions $ f: \mathbb{R} \rightarrow \mathbb{R}$ satisfying \[ f(x^3\plus{}y^3)\equal{}xf(x^2)\plus{}yf(y^2)\] for all real numbers $ x$ and $ y$. [i]Hery Susanto, Malang[/i]