This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 May Olympiad, 1

At Easter Day, $4$ children and their mothers participated in a game in which they had to find hidden chocolate eggs. Augustine found $4$ eggs, Bruno found $6$, Carlos found $9$ and Daniel found $12$. Mrs. Gómez found the same number of eggs as her son, Mrs. Junco found twice as many eggs as her son, Mrs. Messi found three times as many eggs as her son, and Mrs. Núñez found five times as many eggs as her son. At the end of the day, they put all the eggs in boxes, with $18$ eggs in each box, and only one egg was left over. Determine who the mother of each child is.

2019 IberoAmerican, 6

Let $a_1, a_2, \dots, a_{2019}$ be positive integers and $P$ a polynomial with integer coefficients such that, for every positive integer $n$, $$P(n) \text{ divides } a_1^n+a_2^n+\dots+a_{2019}^n.$$ Prove that $P$ is a constant polynomial.

2012 Turkmenistan National Math Olympiad, 7

Tags: algebra
If $a,b,c$ are positive real numbers and satisfy: $\frac{a_1}{b_1}=\frac{a_2}{b_2}=...=\frac{a_n}{b_n}$ then prove that :$ \sum_{i=1}^{n} a^{2}_i \cdot \sum_{i=1}^{n} b^{2}_i =(\sum_{i=1}^{n} a_{i}b_{i})^2$

2021 BMT, 24

Suppose that $a, b, c$, and p are positive integers such that $p$ is a prime number and $$a^2 + b^2 + c^2 = ab + bc + ca + 2021p$$. Compute the least possible value of $\max \,(a, b, c)$.

2020 China Northern MO, BP1

For all positive real numbers $a,b,c$, prove that $$\frac{a^3+b^3}{ \sqrt{a^2-ab+b^2} } + \frac{b^3+c^3}{ \sqrt{b^2-bc+c^2} } + \frac{c^3+a^3}{ \sqrt{c^2-ca+a^2} } \geq 2(a^2+b^2+c^2)$$

1957 AMC 12/AHSME, 23

The graph of $ x^2 \plus{} y \equal{} 10$ and the graph of $ x \plus{} y \equal{} 10$ meet in two points. The distance between these two points is: $ \textbf{(A)}\ \text{less than 1} \qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ \sqrt{2}\qquad \textbf{(D)}\ 2\qquad \textbf{(E)}\ \text{more than 2}$

2014 Denmark MO - Mohr Contest, 5

Let $x_0, x_1, . . . , x_{2014}$ be a sequence of real numbers, which for all $i < j$ satisfy $x_i + x_j \le 2j$. Determine the largest possible value of the sum $x_0 + x_1 + · · · + x_{2014}$.

2008 Princeton University Math Competition, A3/B6

Tags: algebra
Let $f(n) = 9n^5- 5n^3 - 4n$. Find the greatest common divisor of $f(17), f(18),... ,f(2009)$.

1961 IMO, 3

Solve the equation $\cos^n{x}-\sin^n{x}=1$ where $n$ is a natural number.

1990 Baltic Way, 12

Tags: algebra
Let $m$ and $n$ be positive integers. Show that $25m+ 3n$ is divisible by $83$ if and only if so is $3m+ 7n$.

2012 Iran Team Selection Test, 1

Suppose $p$ is an odd prime number. We call the polynomial $f(x)=\sum_{j=0}^n a_jx^j$ with integer coefficients $i$-remainder if $ \sum_{p-1|j,j>0}a_{j}\equiv i\pmod{p}$. Prove that the set $\{f(0),f(1),...,f(p-1)\}$ is a complete residue system modulo $p$ if and only if polynomials $f(x), (f(x))^2,...,(f(x))^{p-2}$ are $0$-remainder and the polynomial $(f(x))^{p-1}$ is $1$-remainder. [i]Proposed by Yahya Motevassel[/i]

2011 Greece JBMO TST, 1

a) Let $n$ be a positive integer. Prove that $ n\sqrt {x-n^2}\leq \frac {x}{2}$ , for $x\geq n^2$. b) Find real $x,y,z$ such that: $ 2\sqrt {x-1} +4\sqrt {y-4} + 6\sqrt {z-9} = x+y+z$

2016 Romania Team Selection Tests, 2

Determine all $f:\mathbb{Z}^+ \rightarrow \mathbb{Z}^+$ such that $f(m)\geq m$ and $f(m+n) \mid f(m)+f(n)$ for all $m,n\in \mathbb{Z}^+$

2022 Assara - South Russian Girl's MO, 4

Alina knows how to twist a periodic decimal fraction in the following way: she finds the minimum preperiod of the fraction, then takes the number that makes up the period and rearranges the last one in it digit to the beginning of the number. For example, from the fraction, $0.123(56708)$ she will get $0.123(85670)$. What fraction will Alina get from fraction $\frac{503}{2022}$ ?

1984 Czech And Slovak Olympiad IIIA, 4

Let $r$ be a natural number greater than $1$. Then there exist positive irrational numbers $x, y$ such that $x^y = r$ . Prove it.

1995 May Olympiad, 2

Tags: algebra
The owner of a hardware store bought a quantity of screws in closed boxes and sells the screws separately. He never has more than one open box. At the end of the day Monday there are $2208$ screws left, at the end of the day Tuesday there are still $1616$ screws and at the end of Wednesday there are still $973$ screws. To control the employees, every night he writes down the number of screws that are in the only open box. The amount entered on Tuesday is double that of Monday. How many screws are there in each closed box if it is known that they are less than $500$?

2023 ELMO Shortlist, A2

Let \(\mathbb R_{>0}\) denote the set of positive real numbers. Find all functions \(f:\mathbb R_{>0}\to\mathbb R_{>0}\) such that for all positive real numbers \(x\) and \(y\), \[f(xy+1)=f(x)f\left(\frac1x+f\left(\frac1y\right)\right).\] [i]Proposed by Luke Robitaille[/i]

1989 China National Olympiad, 6

Find all functions $f:(1,+\infty) \rightarrow (1,+\infty)$ that satisfy the following condition: for arbitrary $x,y>1$ and $u,v>0$, inequality $f(x^uy^v)\le f(x)^{\dfrac{1}{4u}}f(y)^{\dfrac{1}{4v}}$ holds.

2018 Azerbaijan JBMO TST, 1

Let $a, b, c $ be positive real numbers such that $abc = \frac {2} {3}. $ Prove that: $$\frac {ab}{a + b} + \frac {bc} {b + c} + \frac {ca} {c + a} \geqslant \frac {a+b+c} {a^3+b ^ 3 + c ^ 3}.$$

1984 Czech And Slovak Olympiad IIIA, 3

Let the sequence $\{a_n\}$ , $n \ge 0$ satisfy the recurrence relation $$a_{n + 2} =4a_{n + 1}-3a_n, \ \ (1) $$ Let us define the sequence $\{b_n\}$ , $n \ge 1$ by the relation $$b_n= \left[ \frac{a_{n+1}}{a_{n-1}} \right]$$ where we put $b_n =1$ for $a_{n-1}=0$. Prove that, starting from a certain term, the sequence also satisfies the recurrence relation (1). Note: $[x]$ indicates the whole part of the number $x$.

2020 USEMO, 4

A function $f$ from the set of positive real numbers to itself satisfies $$f(x + f(y) + xy) = xf(y) + f(x + y)$$ for all positive real numbers $x$ and $y$. Prove that $f(x) = x$ for all positive real numbers $x$.

2023 Malaysian IMO Team Selection Test, 2

Tags: algebra
Let $a_1, a_2, \cdots, a_n$ be a sequence of real numbers with $a_1+a_2+\cdots+a_n=0$. Define the score $S(\sigma)$ of a permutation $\sigma=(b_1, \cdots b_n)$ of $(a_1, \cdots a_n)$ to be the minima of the sum $$(x_1-b_1)^2+\cdots+(x_n-b_n)^2$$ over all real numbers $x_1\le \cdots \le x_n$. Prove that $S(\sigma)$ attains the maxima over all permutations $\sigma$, if and only if for all $1\le k\le n$, $$b_1+b_2+\cdots+b_k\ge 0.$$ [i]Proposed by Anzo Teh Zhao Yang[/i]

2010 Contests, 2

A polynomial $f$ with integer coefficients is written on the blackboard. The teacher is a mathematician who has $3$ kids: Andrew, Beth and Charles. Andrew, who is $7$, is the youngest, and Charles is the oldest. When evaluating the polynomial on his kids' ages he obtains: [list]$f(7) = 77$ $f(b) = 85$, where $b$ is Beth's age, $f(c) = 0$, where $c$ is Charles' age.[/list] How old is each child?

1979 Chisinau City MO, 175

Prove that if the sum of positive numbers $a, b, c$ is equal to $1$, then $\frac{1}{a}+\frac{1}{b}+\frac{1}{c} \ge 9.$

2023 Ukraine National Mathematical Olympiad, 11.4

Find all functions $f : \mathbb{R} \to \mathbb{R}$, such that for any real $x, y$ holds the following: $$f(x+yf(x+y)) = f(y^2) + xf(y) + f(x)$$ [i]Proposed by Vadym Koval[/i]