This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2023 ABMC, Accuracy

[b]p1.[/b] Find $$2^{\left(0^{\left(2^3\right)}\right)}$$ [b]p2.[/b] Amy likes to spin pencils. She has an $n\%$ probability of dropping the $n$th pencil. If she makes $100$ attempts, the expected number of pencils Amy will drop is $\frac{p}{q}$ , where $p$ and $q$ are relatively prime positive integers. Find $p + q$. [b]p3.[/b] Determine the units digit of $3 + 3^2 + 3^3 + 3^4 +....+ 3^{2022} + 3^{2023}$. [b]p4.[/b] Cyclic quadrilateral $ABCD$ is inscribed in circle $\omega$ with center $O$ and radius $20$. Let the intersection of $AC$ and $BD$ be $E$, and let the inradius of $\vartriangle AEB$ and $\vartriangle CED$ both be equal to $7$. Find $AE^2 - BE^2$. [b]p5.[/b] An isosceles right triangle is inscribed in a circle which is inscribed in an isosceles right triangle that is inscribed in another circle. This larger circle is inscribed in another isosceles right triangle. If the ratio of the area of the largest triangle to the area of the smallest triangle can be expressed as $a+b\sqrt{c}$, such that $a, b$ and $c$ are positive integers and no square divides $c$ except $1$, find $a + b + c$. [b]p6.[/b] Jonny has three days to solve as many ISL problems as he can. If the amount of problems he solves is equal to the maximum possible value of $gcd \left(f(x), f(x+1) \right)$ for $f(x) = x^3 +2$ over all positive integer values of $x$, then find the amount of problems Jonny solves. [b]p7.[/b] Three points $X$, $Y$, and $Z$ are randomly placed on the sides of a square such that $X$ and $Y$ are always on the same side of the square. The probability that non-degenerate triangle $\vartriangle XYZ$ contains the center of the square can be written as $\frac{a}{b}$ , where $a$ and $b$ are relatively prime positive integers. Find $a + b$. [b]p8.[/b] Compute the largest integer less than $(\sqrt7 +\sqrt3)^6$. [b]p9.[/b] Find the minimum value of the expression $\frac{(x+y)^2}{x-y}$ given $x > y > 0$ are real numbers and $xy = 2209$. [b]p10.[/b] Find the number of nonnegative integers $n \le 6561$ such that the sum of the digits of $n$ in base $9$ is exactly $4$ greater than the sum of the digits of $n$ in base $3$. [b]p11.[/b] Estimation (Tiebreaker) Estimate the product of the number of people who took the December contest, the sum of all scores in the November contest, and the number of incorrect responses for Problem $1$ and Problem $2$ on the October Contest. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1991 Irish Math Olympiad, 5

Find all polynomials $f(x) = x^{n} + a_{1}x^{n-1} + \cdots + a_{n}$ with the following properties (a) all the coefficients $a_{1}, a_{2}, ..., a_{n}$ belong to the set $\{ -1, 1 \}$; and (b) all the roots of the equation $f(x)=0$ are real.

2012 Bulgaria National Olympiad, 3

We are given a real number $a$, not equal to $0$ or $1$. Sacho and Deni play the following game. First is Sasho and then Deni and so on (they take turns). On each turn, a player changes one of the “*” symbols in the equation: \[*x^4+*x^3+*x^2+*x^1+*=0\] with a number of the type $a^n$, where $n$ is a whole number. Sasho wins if at the end the equation has no real roots, Deni wins otherwise. Determine (in term of $a$) who has a winning strategy

2022 Thailand Online MO, 1

Tags: equation , algebra
Determine, with proof, all triples of real numbers $(x,y,z)$ satisfying the equations $$x^3+y+z=x+y^3+z=x+y+z^3=-xyz.$$

VI Soros Olympiad 1999 - 2000 (Russia), 8.2

Tags: algebra
Real numbers$ x$ and $y$ it is know that $\frac{x+y}{x-y}+\frac{x-y}{x+y}= 1999$. Find the value of the expression $$\frac{x^4+y^4}{x^4-y^4}+\frac{x^4-y^4}{x^4+y^4}.$$

2019 Junior Balkan Team Selection Tests - Moldova, 4

Let $n(n\geq2)$ be a natural number and $a_1,a_2,...,a_n$ natural positive real numbers. Determine the least possible value of the expression $$E_n=\frac{(1+a_1)\cdot(a_1+a_2)\cdot(a_2+a_3)\cdot...\cdot(a_{n-1}+a_n)\cdot(a_n+3^{n+1})} {a_1\cdot a_2\cdot a_3\cdot...\cdot a_n}$$

1998 Estonia National Olympiad, 1

Tags: algebra , logarithm
Solve the equation $x^2+1 = log_2(x+2)- 2x$.

LMT Guts Rounds, 2023 F

[u]Part 1 [/u] [b]p1.[/b] Calculate $$(4!-5!+2^5 +2^6) \cdot \frac{12!}{7!}+(1-3)(4!-2^4).$$ [b]p2.[/b] The expression $\sqrt{9!+10!+11!}$ can be expressed as $a\sqrt{b}$ for positive integers $a$ and $b$, where $b$ is squarefree. Find $a$. [b]p3.[/b] For real numbers $a$ and $b$, $f(x) = ax^{10}-bx^4+6x +10$ for all real $x$. Given that $f(42) = 11$, find $f (-42)$. [u]Part 2[/u] [b]p4.[/b] How many positive integers less than or equal to $2023$ are divisible by $20$, $23$, or both? [b]p5.[/b] Larry the ant crawls along the surface of a cylinder with height $48$ and base radius $\frac{14}{\pi}$ . He starts at point $A$ and crawls to point $B$, traveling the shortest distance possible. What is the maximum this distance could be? [b]p6.[/b] For a given positive integer $n$, Ben knows that $\lfloor 20x \rfloor = n$, where $x$ is real. With that information, Ben determines that there are $3$ distinct possible values for $\lfloor 23x \rfloor$. Find the least possible value of $n$. [u]Part 3 [/u] [b]p7.[/b] Let $ABC$ be a triangle with area $1$. Points $D$, $E$, and $F$ lie in the interior of $\vartriangle ABC$ in such a way that $D$ is the midpoint of $AE$, $E$ is the midpoint of $BF$, and $F$ is the midpoint of $CD$. Compute the area of $DEF$. [b]p8.[/b] Edwin and Amelia decide to settle an argument by running a race against each other. The starting line is at a given vertex of a regular octahedron and the finish line is at the opposite vertex. Edwin has the ability to run straight through the octahedron, while Amelia must stay on the surface of the octahedron. Given that they tie, what is the ratio of Edwin’s speed to Amelia’s speed? [b]p9.[/b] Jxu is rolling a fair three-sided die with faces labeled $0$, $1$, and $2$. He keeps going until he rolls a $1$, immediately followed by a $2$. What is the expected number of rolls Jxu makes? [u]Part 4 [/u] [b]p10.[/b] For real numbers $x$ and $y$, $x +x y = 10$ and $y +x y = 6$. Find the sum of all possible values of $\frac{x}{y}$. [b]p11.[/b] Derek is thinking of an odd two-digit integer $n$. He tells Aidan that $n$ is a perfect power and the product of the digits of $n$ is also a perfect power. Find the sum of all possible values of $n$. [b]p12.[/b] Let a three-digit positive integer $N = \overline{abc}$ (in base $10$) be stretchable with respect to $m$ if $N$ is divisible by $m$, and when $N$‘s middle digit is duplicated an arbitrary number of times, it‘s still divisible by $m$. How many three-digit positive integers are stretchable with respect to $11$? (For example, $432$ is stretchable with respect to $6$ because $433...32$ is divisible by $6$ for any positive integer number of $3$s.) [u]Part 5 [/u] [b]p13.[/b] How many trailing zeroes are in the base-$2023$ expansion of $2023!$ ? [b]p14.[/b] The three-digit positive integer $k = \overline{abc}$ (in base $10$, with a nonzero) satisfies $\overline{abc} = c^{2ab-1}$. Find the sum of all possible $k$. [b]p15.[/b] For any positive integer $k$, let $a_k$ be defined as the greatest nonnegative real number such that in an infinite grid of unit squares, no circle with radius less than or equal to $a_k$ can partially cover at least $k$ distinct unit squares. (A circle partially covers a unit square only if their intersection has positive area.) Find the sumof all positive integers $n \le 12$ such that $a_n \ne a_{n+1}$. PS. You should use hide for answers. Rounds 6-9 have been posted [url=https://artofproblemsolving.com/community/c3h3267915p30057005]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1980 Vietnam National Olympiad, 2

Can the equation $x^3-2x^2-2x+m = 0$ have three different rational roots?

2022 Purple Comet Problems, 19

Tags: algebra
Let x be a real number such that $(\sqrt{6})^x -3^x = 2^{x-2}$. Evaluate $\frac{4^{x+1}}{9^{x-1}}$ .

2020 Taiwan TST Round 2, 1

Let $\mathbb{R}$ denote the set of all real numbers. Determine all functions $f:\mathbb{R}\to\mathbb{R}$ such that for all real numbers $x$ and $y$, \[f(xy+xf(x))=f(x)\left(f(x)+f(y)\right).\]

Math Hour Olympiad, Grades 8-10, 2015

[u]Round 1[/u] [b]p1.[/b] Six pirates – Captain Jack and his five crewmen – sit in a circle to split a treasure of $99$ gold coins. Jack must decide how many coins to take for himself and how many to give each crewman (not necessarily the same number to each). The five crewmen will then vote on Jack's decision. Each is greedy and will vote “aye” only if he gets more coins than each of his two neighbors. If a majority vote “aye”, Jack's decision is accepted. Otherwise Jack is thrown overboard and gets nothing. What is the most coins Captain Jack can take for himself and survive? [b]p2[/b]. Rose and Bella take turns painting cells red and blue on an infinite piece of graph paper. On Rose's turn, she picks any blank cell and paints it red. Bella, on her turn, picks any blank cell and paints it blue. Bella wins if the paper has four blue cells arranged as corners of a square of any size with sides parallel to the grid lines. Rose goes first. Show that she cannot prevent Bella from winning. [img]https://cdn.artofproblemsolving.com/attachments/d/6/722eaebed21a01fe43bdd0dedd56ab3faef1b5.png[/img] [b]p3.[/b] A $25\times 25$ checkerboard is cut along the gridlines into some number of smaller square boards. Show that the total length of the cuts is divisible by $4$. For example, the cuts shown on the picture have total length $16$, which is divisible by $4$. [img]https://cdn.artofproblemsolving.com/attachments/c/1/e152130e48b804fe9db807ef4f5cd2cbad4947.png[/img] [b]p4.[/b] Each robot in the Martian Army is equipped with a battery that lasts some number of hours. For any two robots, one's battery lasts at least three times as long as the other's. A robot works until its battery is depleted, then recharges its battery until it is full, then goes back to work, and so on. A battery that lasts $N$ hours takes exactly $N$ hours to recharge. Prove that there will be a moment in time when all the robots are recharging (so you can invade the planet). [b]p5.[/b] A casino machine accepts tokens of $32$ different colors, one at a time. For each color, the player can choose between two fixed rewards. Each reward is up to $\$10$ cash, plus maybe another token. For example, a blue token always gives the player a choice of getting either $\$5$ plus a red token or $\$3$ plus a yellow token; a black token can always be exchanged either for $\$10$ (but no token) or for a brown token (but no cash). A player may keep playing as long as he has a token. Rob and Bob each have one white token. Rob watches Bob play and win $\$500$. Prove that Rob can win at least $\$1000$. [img]https://cdn.artofproblemsolving.com/attachments/6/6/e55614bae92233c9b2e7d66f5f425a18e6475a.png [/img] [u]Round 2[/u] [b]p6.[/b] The sum of $2015$ rational numbers is an integer. The product of every pair of them is also an integer. Prove that they are all integers. (A rational number is one that can be written as $m/n$, where $m$ and $n$ are integers and $n\ne 0$.) [b]p7.[/b] An $N \times N$ table is filled with integers such that numbers in cells that share a side differ by at most $1$. Prove that there is some number that appears in the table at least $N$ times. For example, in the $5 \times 5$ table below the numbers $1$ and $2$ appear at least $5$ times. [img]https://cdn.artofproblemsolving.com/attachments/3/8/fda513bcfbe6834d88fb8ca0bfcdb504d8b859.png[/img] PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1996 Romania National Olympiad, 2

Find all polynomials $p_n(x)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0$ ($n\geq 2$) with real and non-zero coeficients s.t. $p_n(x)-p_1(x)p_2(x)...p_{n-1}(x)$ be a constant polynomial. ;)

2005 Austrian-Polish Competition, 8

Given the sets $R_{mn} = \{ (x,y) \mid x=0,1,\dots,m; y=0,1,\dots,n \}$, consider functions $f:R_{mn}\to \{-1,0,1\}$ with the following property: for each quadruple of points $A_1,A_2,A_3,A_4\in R_{mn}$ which form a square with side length $0<s<3$, we have $$f(A_1)+f(A_2)+f(A_3)+f(A_4)=0.$$ For each pair $(m,n)$ of positive integers, determine $F(m,n)$, the number of such functions $f$ on $R_{mn}$.

1986 Swedish Mathematical Competition, 5

Tags: algebra , sum
In the arrangement of $pn$ real numbers below, the difference between the greatest and smallest numbers in each row is at most $d$, $d > 0$. \[ \begin{array}{l} a_{11} \,\, a_{12} \,\, ... \,\, a_{1n}\\ a_{21} \,\, a_{22} \,\, ... \,\, a_{2n}\\ \,\, . \,\, \,\, \,\, \,\, . \,\, \,\, \,\, \,\, \,\, \,\, \,\, \,\, .\\ \,\, . \,\, \,\, \,\, \,\, . \,\, \,\, \,\, \,\, \,\, \,\, \,\, \,\, .\\ \,\, . \,\, \,\, \,\, \,\, . \,\, \,\, \,\, \,\, \,\, \,\, \,\, \,\, .\\ a_{n1} \,\, a_{n2} \,\, ... \,\, a_{nn}\\ \end{array} \] Prove that, when the numbers in each column are rearranged in decreasing order, the difference between the greatest and smallest numbers in each row will still be at most d.

2017 IMO Shortlist, A1

Let $a_1,a_2,\ldots a_n,k$, and $M$ be positive integers such that $$\frac{1}{a_1}+\frac{1}{a_2}+\cdots+\frac{1}{a_n}=k\quad\text{and}\quad a_1a_2\cdots a_n=M.$$ If $M>1$, prove that the polynomial $$P(x)=M(x+1)^k-(x+a_1)(x+a_2)\cdots (x+a_n)$$ has no positive roots.

EMCC Accuracy Rounds, 2024

[b]p1.[/b] Find the smallest positive multiple of $9$ whose digits are all even. [b]p2.[/b] Anika writes down a positive real number $x$ in decimal form. When Nat erases everything to the left of the decimal point, the remaining value is one-fifth of x. Find the sum of all possible values of $x$. [b]p3.[/b] A star-like shape is formed by joining up the midpoints and vertices of a unit square, as shown in the diagram below. Compute the area of this shape. [img]https://cdn.artofproblemsolving.com/attachments/4/8/923b1bf26f6e9872b596e8c81ad1872137f362.png[/img] [b]p4.[/b] Benny and Daria are running a $200$ meter foot race, each at a different constant speed. When Daria finishes the race, she is $14$ meters ahead of Benny. The next time they race, Daria starts 14 meters behind Benny, who starts at the starting line. Both runners run at the same constant speed as in the first race. When Daria reaches the finish line, compute, in centimeters, how far she is ahead of Benny. [b]p5.[/b] In one semester, Ronald takes ten biology quizzes, earning a distinct integer score from $91$ to $100$ on each quiz. He notices that after the first three quizzes, the average of his three most recent scores always increased. Compute the number of ways Ronald could have earned the ten quiz scores. [b]p6.[/b] Ant and Ben are playing a game with stones. They begin with $Z$ stones on the ground. Ant and Ben take turns removing a prime number of stones. Ant moves first. The player who is first unable to make a valid move loses. Find the sum of all positive integers $Z \le 30$ such that Ben can guarantee a win with perfect play. [b]p7.[/b] Let $P$ be a point in a regular octagon as shown in the diagram below. The areas of three triangles are shown. Find the area of the octagon. [img]https://cdn.artofproblemsolving.com/attachments/0/9/6fde77eeafd04614046292175e4b1411158e85.png[/img] [b]p8.[/b] Find the number of ordered triples $(a, b, c)$ of nonnegative integers with $a \le b \le c$ for which $5a + 4b + 6c = 1200$. [b]p9.[/b] Define $$f(x) = \begin{cases} 2x \,\,\,\, ,\,\,\,\, 0 \le x < \frac12 \\ 2 - 2x \,\,\,\, , \,\,\,\, \frac12 \le x \le 1 \end{cases}$$ Michael picks a real number $0 \le x \le 1$. Michael applies $f$ repeatedly to $x$ until he reaches $x$ again. Find the number of real numbers $x$ for which Michael applies $f$ exactly $12$ times. [b]p10.[/b] In $\vartriangle ABC$, let point $H$ be the intersection of its altitudes and let $M$ be the midpoint of side $BC$. Given that $BC = 4$, $MA = 3$, and $\angle HMA = 60^o$, find the circumradius of $\vartriangle ABC$. PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2005 Slovenia National Olympiad, Problem 1

Tags: algebra
If $x,y,z$ are real numbers such that $xyz=1$, evaluate $$\frac{x+1}{xy+x+1}+\frac{y+1}{yz+y+1}+\frac{z+1}{zx+z+1}.$$

1999 Israel Grosman Mathematical Olympiad, 2

Find the smallest positive integer $n$ for which $0 <\sqrt[4]{n}- [\sqrt[4]{n}]< 10^{-5}$ .

MOAA Team Rounds, 2019.2

Tags: geometry , team , algebra
The lengths of the two legs of a right triangle are the two distinct roots of the quadratic $x^2 - 36x + 70$. What is the length of the triangle’s hypotenuse?

2011 Saudi Arabia IMO TST, 3

Let $n$ be a positive integer. Prove that at least one of the integers $[2^n \cdot \sqrt2]$, $[2^{n+1} \cdot \sqrt2]$, $...$, $[2^{2n} \cdot \sqrt2]$ is even, where $[a]$ denotes the integer part of $a$.

2006 Korea National Olympiad, 6

Prove that for any positive real numbers $x,y$ and $z,$ $xyz(x+2)(y+2)(z+2)\le(1+\frac{2(xy+yz+zx)}{3})^3$

2022 Thailand TST, 2

Let $n\geq 2$ be an integer and let $a_1, a_2, \ldots, a_n$ be positive real numbers with sum $1$. Prove that $$\sum_{k=1}^n \frac{a_k}{1-a_k}(a_1+a_2+\cdots+a_{k-1})^2 < \frac{1}{3}.$$

2020 Princeton University Math Competition, B1

Tags: algebra
The function $f(x) = x^2 + (2a + 3)x + (a^2 + 1)$ only has real zeroes. Suppose the smallest possible value of $a$ can be written in the form $p/q$, where $p, q$ are relatively prime integers. Find $|p| + |q|$.

2019 HMIC, 5

Let $p = 2017$ be a prime and $\mathbb{F}_p$ be the integers modulo $p$. A function $f: \mathbb{Z}\rightarrow\mathbb{F}_p$ is called [i]good[/i] if there is $\alpha\in\mathbb{F}_p$ with $\alpha\not\equiv 0\pmod{p}$ such that \[f(x)f(y) = f(x + y) + \alpha^y f(x - y)\pmod{p}\] for all $x, y\in\mathbb{Z}$. How many good functions are there that are periodic with minimal period $2016$? [i]Ashwin Sah[/i]