This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 15925

2007 Tuymaada Olympiad, 2

Two polynomials $ f(x)=a_{100}x^{100}+a_{99}x^{99}+\dots+a_{1}x+a_{0}$ and $ g(x)=b_{100}x^{100}+b_{99}x^{99}+\dots+b_{1}x+b_{0}$ of degree $ 100$ differ from each other by a permutation of coefficients. It is known that $ a_{i}\ne b_{i}$ for $ i=0, 1, 2, \dots, 100$. Is it possible that $ f(x)\geq g(x)$ for all real $ x$?

2021 Cono Sur Olympiad, 5

Tags: algebra
Given an integer $n \geq 3$, determine if there are $n$ integers $b_1, b_2, \dots , b_n$, distinct two-by-two (that is, $b_i \neq b_j$ for all $i \neq j$) and a polynomial $P(x)$ with coefficients integers, such that $P(b_1) = b_2, P(b_2) = b_3, \dots , P(b_{n-1}) = b_n$ and $P(b_n) = b_1$.

2015 Azerbaijan National Olympiad, 1

Let $a,b$ and $c$ be positive reals such that $abc=\frac{1}{8}$.Then prove that \[a^2+b^2+c^2+a^2b^2+a^2c^2+b^2c^2\ge\frac{15}{16}\]

2020 AIME Problems, 11

Let $P(x) = x^2 - 3x - 7$, and let $Q(x)$ and $R(x)$ be two quadratic polynomials also with the coefficient of $x^2$ equal to $1$. David computes each of the three sums $P + Q$, $P + R$, and $Q + R$ and is surprised to find that each pair of these sums has a common root, and these three common roots are distinct. If $Q(0) = 2$, then $R(0) = \dfrac mn$, where $m$ and $n$ are relatively prime positive integers. Find $m+n$.

2015 BAMO, 3

Let $k$ be a positive integer. Prove that there exist integers $x$ and $y$, neither of which is divisible by $3$, such that $x^2+2y^2 = 3^k$.

1972 Czech and Slovak Olympiad III A, 1

Show that the inequality \[\prod_{k=2}^n\left(1-\frac{1}{k^3}\right)>\frac12\] holds for every positive integer $n>1.$

2011 Gheorghe Vranceanu, 2

Let $ a\ge 3 $ and a polynom $ P. $ Show that: $$ \max_{1\le k\le \text{grad} P} \left| a^{k-1}-P(k-1) \right| \ge 1 $$

2005 Germany Team Selection Test, 1

Let $a_0$, $a_1$, $a_2$, ... be an infinite sequence of real numbers satisfying the equation $a_n=\left|a_{n+1}-a_{n+2}\right|$ for all $n\geq 0$, where $a_0$ and $a_1$ are two different positive reals. Can this sequence $a_0$, $a_1$, $a_2$, ... be bounded? [i]Proposed by Mihai Bălună, Romania[/i]

2006 USAMO, 2

For a given positive integer $k$ find, in terms of $k$, the minimum value of $N$ for which there is a set of $2k + 1$ distinct positive integers that has sum greater than $N$ but every subset of size $k$ has sum at most $\tfrac{N}{2}.$

2022 Azerbaijan Junior National Olympiad, A1

Find the minimum positive value of $ 1*2*3*4*...*2020*2021*2022$ where you can replace $*$ as $+$ or $-$

1899 Eotvos Mathematical Competition, 1

Tags: geometry , algebra
The points $A_0, A_1, A_2, A_3, A_4$ divide a unit circle (circle of radius $1$) into five equal parts. Prove that the chords $A_0, A_1, A_0, A_2$ satisfy $$(A_0A_1 \cdot A_0A_2)^2= 5$$

1995 Polish MO Finals, 3

Let $p$ be a prime number, and define a sequence by: $x_i=i$ for $i=,0,1,2...,p-1$ and $x_n=x_{n-1}+x_{n-p}$ for $n \geq p$ Find the remainder when $x_{p^3}$ is divided by $p$.

2016 HMNT, 3

Complex number $\omega$ satisfies $\omega^5 = 2$. Find the sum of all possible values of $\omega^4 + \omega^3 + \omega^2 + \omega + 1$.

2019 Germany Team Selection Test, 1

Let $\mathbb{Q}^+$ denote the set of all positive rational numbers. Determine all functions $f:\mathbb{Q}^+\to \mathbb{Q}^+$ satisfying$$f(x^2f(y)^2)=f(x^2)f(y)$$for all $x,y\in\mathbb{Q}^+$

1998 Turkey Team Selection Test, 3

Let $f(x_{1}, x_{2}, . . . , x_{n})$ be a polynomial with integer coefficients of degree less than $n$. Prove that if $N$ is the number of $n$-tuples $(x_{1}, . . . , x_{n})$ with $0 \leq x_{i} < 13$ and $f(x_{1}, . . . , x_{n}) = 0 (mod 13)$, then $N$ is divisible by 13.

2010 BMO TST, 2

Let $ a\geq 2$ be a real number; with the roots $ x_{1}$ and $ x_{2}$ of the equation $ x^2\minus{}ax\plus{}1\equal{}0$ we build the sequence with $ S_{n}\equal{}x_{1}^n \plus{} x_{2}^n$. [b]a)[/b]Prove that the sequence $ \frac{S_{n}}{S_{n\plus{}1}}$, where $ n$ takes value from $ 1$ up to infinity, is strictly non increasing. [b]b)[/b]Find all value of $ a$ for the which this inequality hold for all natural values of $ n$ $ \frac{S_{1}}{S_{2}}\plus{}\cdots \plus{}\frac{S_{n}}{S_{n\plus{}1}}>n\minus{}1$

2005 China Western Mathematical Olympiad, 4

Tags: algebra
Given is the positive integer $n > 2$. Real numbers $\mid x_i \mid \leq 1$ ($i = 1, 2, ..., n$) satisfying $\mid \sum_{i=1}^{n}x_i \mid > 1$. Prove that there exists positive integer $k$ such that $\mid \sum_{i=1}^{k}x_i - \sum_{i=k+1}^{n}x_i \mid \leq 1$.

MBMT Guts Rounds, 2023

[hide=B stands for Bernoulli, G stands for Germain]they had two problem sets under those two names[/hide] [u]Set 1[/u] [b]B1 / G1[/b] Find $20^3 + 2^2 + 3^1$. [b]B2[/b] A piece of string of length $10$ is cut $4$ times into strings of equal length. What is the length of each small piece of string? [b]B3 / G2[/b] What is the smallest perfect square that is also a perfect cube? [b]B4[/b] What is the probability a $5$-sided die with sides labeled from $1$ through $5$ rolls an odd number? [b]B5 / G3[/b] Hanfei spent $14$ dollars on chicken nuggets at McDonalds. $4$ nuggets cost $3$ dollars, $6$ nuggets cost $4$ dollars, and $12$ nuggets cost $9$ dollars. How many chicken nuggets did Hanfei buy? [u]Set 2[/u] [b]B6[/b] What is the probability a randomly chosen positive integer less than or equal to $15$ is prime? [b]B7[/b] Andrew flips a fair coin with sides labeled 0 and 1 and also rolls a fair die with sides labeled $1$ through $6$. What is the probability that the sum is greater than $5$? [b]B8 / G4[/b] What is the radius of a circle with area $4$? [b]B9[/b] What is the maximum number of equilateral triangles on a piece of paper that can share the same corner? [b]B10 / G5[/b] Bob likes to make pizzas. Bab also likes to make pizzas. Bob can make a pizza in $20$ minutes. Bab can make a pizza in $30$ minutes. If Bob and Bab want to make $50$ pizzas in total, how many hours would that take them? [u]Set 3[/u] [b]B11 / G6[/b] Find the area of an equilateral rectangle with perimeter $20$. [b]B12 / G7[/b] What is the minimum possible number of divisors that the sum of two prime numbers greater than $2$ can have? [b]B13 / G8[/b] Kwu and Kz play rock-paper-scissors-dynamite, a variant of the classic rock-paperscissors in which dynamite beats rock and paper but loses to scissors. The standard rock-paper-scissors rules apply, where rock beats scissors, paper beats rock, and scissors beats paper. If they throw out the same option, they keep playing until one of them wins. If Kz randomly throws out one of the four options with equal probability, while Kwu only throws out dynamite, what is the probability Kwu wins? [b]B14 / G9[/b] Aven has $4$ distinct baguettes in a bag. He picks three of the bagged baguettes at random and lays them on a table in random order. How many possible orderings of three baguettes are there on the table? [b]B15 / G10[/b] Find the largest $7$-digit palindrome that is divisible by $11$. PS. You should use hide for answers. Rest problems have been posted [url=https://artofproblemsolving.com/community/c3h3132170p28376644]here[/url]. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

1988 Tournament Of Towns, (164) 1

In January Kolya and Vasya have been assessed at school $20$ times and each has been given $20$ marks (each being an integer no greater than $5$ , with both Kolya and Vasya receiving at least twos on each occasion). Kolya has been given as many fives as Vasya fours, as many fours as Vasya threes, as many threes as Vasya twos and as many twos as Vasya fives. If each has the same average mark , determine how many twos were given to Kolya. (S . Fomin, Leningrad)

2013 South africa National Olympiad, 4

Determine all pairs of polynomials $f$ and $g$ with real coefficients such that \[ x^2 \cdot g(x) = f(g(x)). \]

2005 AMC 10, 24

For each positive integer $ m > 1$, let $ P(m)$ denote the greatest prime factor of $ m$. For how many positive integers $ n$ is it true that both $ P(n) \equal{} \sqrt{n}$ and $ P(n \plus{} 48) \equal{} \sqrt{n \plus{} 48}$? $ \textbf{(A)}\ 0\qquad \textbf{(B)}\ 1\qquad \textbf{(C)}\ 3\qquad \textbf{(D)}\ 4\qquad \textbf{(E)}\ 5$

Mid-Michigan MO, Grades 7-9, 2015

[b]p1.[/b] Thirty players participate in a chess tournament. Every player plays one game with every other player. What maximal number of players can get exactly $5$ points? (any game adds $1$ point to the winner’s score, $0$ points to a loser’s score, in the case of a draw each player obtains $1/2$ point.) [b]p2.[/b] A father and his son returned from a fishing trip. To make their catches equal the father gave to his son some of his fish. If, instead, the son had given his father the same number of fish, then father would have had twice as many fish as his son. What percent more is the father's catch more than his son's? [b]p3.[/b] What is the maximal number of pieces of two shapes, [img]https://cdn.artofproblemsolving.com/attachments/a/5/6c567cf6a04b0aa9e998dbae3803b6eeb24a35.png[/img] and [img]https://cdn.artofproblemsolving.com/attachments/8/a/7a7754d0f2517c93c5bb931fb7b5ae8f5e3217.png[/img], that can be used to tile a $7\times 7$ square? [b]p4.[/b] Six shooters participate in a shooting competition. Every participant has $5$ shots. Each shot adds from 1 to $10$ points to shooter’s score. Every person can score totally for all five shots from $5$ to $50$ points. Each participant gets $7$ points for at least one of his shots. The scores of all participants are different. We enumerate the shooters $1$ to $6$ according to their scores, the person with maximal score obtains number $1$, the next one obtains number $2$, the person with minimal score obtains number $6$. What score does obtain the participant number 3? The total number of all obtained points is $264$. [b]p5.[/b] There are $2014$ stones in a pile. Two players play the following game. First, player $A$ takes some number of stones (from $1$ to $30$) from the pile, then player B takes $1$ or $2$ stones, then player $A$ takes $2$ or $3$ stones, then player $B$ takes $3$ or $4$ stones, then player A takes $4$ or $5$ stones, etc. The player who gets the last stone is the winner. If no player gets the last stone (there is at least one stone in the pile but the next move is not allowed) then the game results in a draw. Who wins the game using the right strategy? PS. You should use hide for answers. Collected [url=https://artofproblemsolving.com/community/c5h2760506p24143309]here[/url].

2015 Argentina National Olympiad, 1

Tags: algebra , sum
Express the sum of $99$ terms$$\frac{1\cdot 4}{2\cdot 5}+\frac{2\cdot 7}{5\cdot 8}+\ldots +\frac{k(3k+1 )}{(3k-1)(3k+2)}+\ldots +\frac{99\cdot 298}{296\cdot 299}$$ as an irreducible fraction.

2004 Romania National Olympiad, 1

Let $f : \mathbb{R} \to \mathbb{R}$ be a function such that $|f(x)-f(y)| \leq |x-y|$, for all $x,y \in \mathbb{R}$. Prove that if for any real $x$, the sequence $x,f(x),f(f(x)),\ldots$ is an arithmetic progression, then there is $a \in \mathbb{R}$ such that $f(x)=x+a$, for all $x \in \mathbb R$.

1967 Dutch Mathematical Olympiad, 5

Consider rows of the form: $[x], [2x], [3x], ...$ Proof that, if $N \in N$ does not occur in the sequence $([n x])$, then there is an $n \in N$ with $n - 1 < \frac{N}{x}< n -\frac{1}{x}$ Prove that, for $x, y \notin Q$: $\frac{1}{x}+\frac{1}{y} = 1$, then each $N \in N$ term is either of $([nx])$ or of $([ny])$.