This website contains problems from math contests. Problems and corresponding tags were obtained from the Art of Problem Solving website.

Tags were heavily modified to better represent problems.

AND:
OR:
NO:

Found problems: 487

2020 Tuymaada Olympiad, 5

Coordinate axes (without any marks, with the same scale) and the graph of a quadratic trinomial $y = x^2 + ax + b$ are drawn in the plane. The numbers $a$ and $b$ are not known. How to draw a unit segment using only ruler and compass?

1986 Balkan MO, 4

Let $ABC$ a triangle and $P$ a point such that the triangles $PAB, PBC, PCA$ have the same area and the same perimeter. Prove that if: a) $P$ is in the interior of the triangle $ABC$ then $ABC$ is equilateral. b) $P$ is in the exterior of the triangle $ABC$ then $ABC$ is right angled triangle.

1956 AMC 12/AHSME, 29

The points of intersection of $ xy \equal{} 12$ and $ x^2 \plus{} y^2 \equal{} 25$ are joined in succession. The resulting figure is: $ \textbf{(A)}\ \text{a straight line} \qquad\textbf{(B)}\ \text{an equilateral triangle} \qquad\textbf{(C)}\ \text{a parallelogram}$ $ \textbf{(D)}\ \text{a rectangle} \qquad\textbf{(E)}\ \text{a square}$

2015 AMC 12/AHSME, 12

The parabolas $y=ax^2-2$ and $y=4-bx^2$ intersect the coordinate axes in exactly four points, and these four points are the vertices of a kite of area $12$. What is $a+b$? $\textbf{(A) }1\qquad\textbf{(B) }1.5\qquad\textbf{(C) }2\qquad\textbf{(D) }2.5\qquad\textbf{(E) }3$

1992 National High School Mathematics League, 1

Tags: conic , parabola
For any positive integer $n$, $A_n$ and $B_n$ are intersection of parabola $y=(n^2+n)x^2-(2n+1)x+1$ and $x$-axis. Then, the value of $|A_1B_1|+|A_2B_2|+\cdots+|A_{1992}B_{1992}|$ is $\text{(A)}\frac{1991}{1992}\qquad\text{(B)}\frac{1992}{1993}\qquad\text{(C)}\frac{1991}{1993}\qquad\text{(D)}\frac{1993}{1992}$

2003 Mediterranean Mathematics Olympiad, 2

In a triangle $ABC$ with $BC = CA + \frac 12 AB$, point $P$ is given on side $AB$ such that $BP : PA = 1 : 3$. Prove that $\angle CAP = 2 \angle CPA.$

1973 Polish MO Finals, 6

Prove that for every centrally symmetric polygon there is at most one ellipse containing the polygon and having the minimal area.

2006 Romania Team Selection Test, 1

The circle of center $I$ is inscribed in the convex quadrilateral $ABCD$. Let $M$ and $N$ be points on the segments $AI$ and $CI$, respectively, such that $\angle MBN = \frac 12 \angle ABC$. Prove that $\angle MDN = \frac 12 \angle ADC$.

2014-2015 SDML (High School), 8

Tags: conic , ellipse , geometry
What is the maximum area of a triangle that can be inscribed in an ellipse with semi-axes $a$ and $b$? $\text{(A) }ab\frac{3\sqrt{3}}{4}\qquad\text{(B) }ab\qquad\text{(C) }ab\sqrt{2}\qquad\text{(D) }\left(a+b\right)\frac{3\sqrt{3}}{4}\qquad\text{(E) }\left(a+b\right)\sqrt{2}$

2007 Vietnam National Olympiad, 3

Let B,C be fixed points and A be roving point. Let H, G be orthecentre and centroid of triagle ABC. Known midpoint of HG lies on BC, find locus of A

2012 Hitotsubashi University Entrance Examination, 3

For constants $a,\ b,\ c,\ d$ consider a process such that the point $(p,\ q)$ is mapped onto the point $(ap+bq,\ cp+dq)$. Note : $(a,\ b,\ c,\ d)\neq (1,\ 0,\ 0,\ 1)$. Let $k$ be non-zero constant. All points of the parabola $C: y=x^2-x+k$ are mapped onto $C$ by the process. (1) Find $a,\ b,\ c,\ d$. (2) Let $A'$ be the image of the point $A$ by the process. Find all values of $k$ and the coordinates of $A$ such that the tangent line of $C$ at $A$ and the tangent line of $C$ at $A'$ formed by the process are perpendicular at the origin.

2022 AMC 12/AHSME, 8

What is the graph of $y^4+1=x^4+2y^2$ in the coordinate plane? $ \textbf{(A)}\ \textbf{Two intersecting parabolas} \qquad \textbf{(B)}\ \textbf{Two nonintersecting parabolas} \qquad \textbf{(C)}\ \textbf{Two intersecting circles} \qquad \textbf{(D)}\ \textbf{A circle and a hyperbola} \qquad \textbf{(E)}\ \textbf{A circle and two parabolas}$

2024 HMIC, 5

Let $ABC$ be an acute, scalene triangle with circumcenter $O$ and symmedian point $K$. Let $X$ be the point on the circumcircle of triangle $BOC$ such that $\angle AXO = 90^\circ$. Assume that $X\neq K$. The hyperbola passing through $B$, $C$, $O$, $K$, and $X$ intersects the circumcircle of triangle $ABC$ at points $U$ and $V$, distinct from $B$ and $C$. Prove that $UV$ is the perpendicular bisector of $AX$. [i]The symmedian point of triangle $ABC$ is the intersection of the reflections of $B$-median and $C$-median across the angle bisectors of $\angle ABC$ and $\angle ACB$, respectively.[/i] [i]Pitchayut Saengrungkongka[/i]

2001 Finnish National High School Mathematics Competition, 2

Equations of non-intersecting curves are $y = ax^2 + bx + c$ and $y = dx^2 + ex + f$ where $ad < 0.$ Prove that there is a line of the plane which does not meet either of the curves.

2002 Iran MO (3rd Round), 6

$M$ is midpoint of $BC$.$P$ is an arbitary point on $BC$. $C_{1}$ is tangent to big circle.Suppose radius of $C_{1}$ is $r_{1}$ Radius of $C_{4}$ is equal to radius of $C_{1}$ and $C_{4}$ is tangent to $BC$ at P. $C_{2}$ and $C_{3}$ are tangent to big circle and line $BC$ and circle $C_{4}$. [img]http://aycu01.webshots.com/image/4120/2005120338156776027_rs.jpg[/img] Prove : \[r_{1}+r_{2}+r_{3}=R\] ($R$ radius of big circle)

1998 Croatia National Olympiad, Problem 1

Tags: parabola , conic , geometry
Let there be a given parabola $y^2=4ax$ in the coordinate plane. Consider all chords of the parabola that are visible at a right angle from the origin of the coordinate system. Prove that all these chords pass through a fixed point.

2000 Croatia National Olympiad, Problem 1

Let $\mathcal P$ be the parabola $y^2=2px$, and let $T_0$ be a point on it. Point $T_0'$ is such that the midpoint of the segment $T_0T_0'$ lies on the axis of the parabola. For a variable point $T$ on $\mathcal P$, the perpendicular from $T_0'$ to the line $T_0T$ intersects the line through $T$ parallel to the axis of $\mathcal P$ at a point $T'$. Find the locus of $T'$.

2023 Assara - South Russian Girl's MO, 7

A parabola is drawn on the coordinate plane - the graph of a square trinomial. The vertices of triangle $ABC$ lie on this parabola so that the bisector of angle $\angle BAC$ is parallel to the axis $Ox$ . Prove that the midpoint of the median drawn from vertex $A$ lies on the axis of the parabola.

1977 AMC 12/AHSME, 5

The set of all points $P$ such that the sum of the (undirected) distances from $P$ to two fixed points $A$ and $B$ equals the distance between $A$ and $B$ is $\textbf{(A) }\text{the line segment from }A\text{ to }B\qquad$ $\textbf{(B) }\text{the line passing through }A\text{ and }B\qquad$ $\textbf{(C) }\text{the perpendicular bisector of the line segment from }A\text{ to }B\qquad$ $\textbf{(D) }\text{an elllipse having positive area}\qquad$ $\textbf{(E) }\text{a parabola}$

2022 Sharygin Geometry Olympiad, 23

Tags: ellipse , conic , geometry
An ellipse with focus $F$ is given. Two perpendicular lines passing through $F$ meet the ellipse at four points. The tangents to the ellipse at these points form a quadrilateral circumscribed around the ellipse. Prove that this quadrilateral is inscribed into a conic with focus $F$

1970 IMO Longlists, 53

A square $ABCD$ is divided into $(n - 1)^2$ congruent squares, with sides parallel to the sides of the given square. Consider the grid of all $n^2$ corners obtained in this manner. Determine all integers $n$ for which it is possible to construct a non-degenerate parabola with its axis parallel to one side of the square and that passes through exactly $n$ points of the grid.

2020-IMOC, G4

Tags: conic , incenter , geometry
Let $I$ be the incenter of triangle $ABC$. Let $BI$ and $AC$ intersect at $E$, and $CI$ and $AB$ intersect at $F$. Suppose that $R$ is another intersection of $\odot (ABC)$ and $\odot (AEF)$. Let $M$ be the midpoint of $BC$, and $P, Q$ are the intersections of $AI, MI$ and $EF$, respectively. Show that $A, P, Q, R$ are concyclic. (ltf0501).

PEN H Problems, 4

Find all pairs $(x, y)$ of positive rational numbers such that $x^{2}+3y^{2}=1$.

1997 National High School Mathematics League, 4

Tags: ellipse , conic
In rectangular coordinate system, if $m(x^2+y^2+2y+1)=(x-2y+3)^2$ refers to an ellipse, then the range value of $m$ is $\text{(A)}(0,1)\qquad\text{(B)}(1,+\infty)\qquad\text{(C)}(0,5)\qquad\text{(D)}(5,+\infty)$

1986 AMC 12/AHSME, 13

A parabola $y = ax^{2} + bx + c$ has vertex $(4,2)$. If $(2,0)$ is on the parabola, then $abc$ equals $ \textbf{(A)}\ -12\qquad\textbf{(B)}\ -6\qquad\textbf{(C)}\ 0\qquad\textbf{(D)}\ 6\qquad\textbf{(E)}\ 12$